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The purpose of this note is to present a proof of the Bott periodicity theorem
that is based on the periodicity of Clifford algebras. Such a proof was first
predicted in [2], and then constructed in [8] and in [3]. Here, we give another
proof along the same lines as [8], but based on a different model of K-theory.

In order to simplify the notation, we only present the periodicity for KO
theory. The arguments apply without difficulty to the case of complex K-theory.

1 Clifford algebras

In this paper, the Clifford algebras are considered as Z/2-graded ∗-algebras,
defined over the reals. They are given by

Cl(1) := 〈e | e is odd, e2 = 1, e∗ = e〉,
Cl(−1) := 〈f | f is odd, f2 = −1, f∗ = −f〉,
Cl(n) := Cl(1)⊗n, Cl(−n) := Cl(−1)⊗n,

where the tensor product of Z/2-graded ∗-algebras has multiplication given by

(a⊗ b)(c⊗ d) := (−1)|b||c|ac⊗ bd,

and involution given by

(a⊗ b)∗ := (−1)|a||b|a∗ ⊗ b∗.

See [4, Section 14] for more background about Z/2-graded operator algebras.
These algebras are equipped with a trace tr : Cl(n)→ R, given by

tr(1) := 1, tr(e) := 0, tr(f) := 0

on Cl(1) and Cl(−1), and extended via the formula tr(a ⊗ b) := tr(a)tr(b). It
satisfies tr(ab) = tr(ba), tr(1) = 1, tr(a∗) = tr(a), tr(a) > 0 for a > 0, and
tr(a) = 0 for a odd.

The Clifford algebras are actually von Neumann algebras1, meaning that
they admit faithful ∗-representations on Hilbert spaces. Let us adopt the fol-
lowing

1Since our algebras are finite dimensional, there is no difference between von Neumann
algebras and C∗-algebras. However, the formula (1) is better understood within the theory
of von Neumann algebras.
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Convention. All modules shall be finite dimensional, and shall be equipped with
Hilbert space structures.

If A is an algebra with a trace as above, then the scalar product 〈a, b〉 :=
tr(ab∗) equips it with a Hilbert space structure, thus making it a module over
itself. Let {ai} be an orthonormal basis of A with respect to that inner product.
The tensor product M ⊗A N of a right module M with a left module N is again
a Hilbert space. Its scalar product is given by the formula

〈m⊗ n,m′ ⊗ n′〉 :=
∑
i

〈mai,m
′〉〈n, ain

′〉. (1)

Definition 1. Let A, B be finite dimensional Z/2-graded von Neumann alge-
bras. Then A and B are called Morita equivalent if there exist bimodules AMB

and BNA such that AM⊗B NA ≃ AAA and BN⊗A MB ≃ BBB. We shall
denote this relation by A ≃M B.

If A and B are Morita equivalent, then the functors N ⊗A − and M ⊗B −
implement an equivalence of categories between the category of A-modules, and
that of B-modules.

Lemma 2. One has [cl1-1]

R ≃M Cl(1)⊗ Cl(−1). (2)

Proof. The algebra Cl(1)⊗ Cl(−1) is isomorphic to End(R1|1) via the map

e⊗ 1 7→
(

0 1
1 0

)
, 1⊗ f 7→

(
0 1
−1 0

)
,

and the latter is Morita equivalent to R via the bimodules End(R1|1) R
1|1

R and

R R
1|1

End(R1|1). Here, the first R
1|1 should be thought of as column vectors,

while the second R
1|1 should be thought of as row vectors. �

By the above lemma, we then get [cl+]

Cl(n + m) ≃M Cl(n)⊗ Cl(m) (3)

for all integers n and m. Let [Dnm]

Cl(n+m)

(
Dn,m

)
Cl(n)⊗Cl(m)

(4)

be a bimodule implementing the Morita equivalence (3). In the appendix, we
will show how to chose the bimodules (4) so that they satisfy certain nice com-
patibility properties.

Let H be the algebra of quaternions, put in even degree, and with involution
i∗ := −i, j∗ := −j, and k∗ := −k. Letting e1, . . . , en and f1, . . . , fn denote the
generators of Cl(n) and Cl(−n), we then have isomorphisms [cl3]

Cl(3) ≃ H⊗ Cl(−1), Cl(−3) ≃ H⊗ Cl(1).
e1 7→ i⊗ f f1 7→ i⊗ e
e2 7→ j ⊗ f f2 7→ j ⊗ e
e3 7→ k ⊗ f f3 7→ k ⊗ e

(5)
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Putting together the above computations, one obtains the following periodicity
theorem.

Theorem 3 (periodicity of Clifford algebras). [PerClif] One has

Cl(n) ≃M Cl(n + 8).

Proof. In view of (3), it is enough to show the result for a given value of n. We
shall take n = −4. By (5), we then have isomorphisms

Cl(−4) = Cl(−1)⊗ Cl(−3) ≃ Cl(−1)⊗H⊗ Cl(1) ≃ Cl(3)⊗ Cl(1) = Cl(4).

�

Denoting by a solid arrow the operation − ⊗ Cl(1), and by a dotted arrow
the operation − ⊗ Cl(−1), we can summarize the above computations in the
following small diagram:

R

Cl(1)

Cl(2)

Cl(3)

H

Cl(−3)

Cl(−2)

Cl(−1)
((RRRRR
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2 Quasi-bundles

Thereafter, we shall assume that all our base spaces are paracompact, namely,
that any open cover can be refined to a locally finite one. This condition is
equivalent to the existence of enough partitions of unity [9], and is satisfied by
all reasonnable topological spaces. In particular, it is satisfied by CW -complexes
[10].

Let X be a space, and {Ui} an open cover that is closed under taking inter-
sections. Suppose that we are given a finite dimensional vector bundle Vi over
each Ui, and inclusions ϕij : Vi|Uj

→֒ Vj for Uj ⊂ Ui, subject to the cocycle
condition ϕjk ◦ ϕij = ϕik. Then we can form the total space V :=

∐
Vi

/
∼,

where the equivalence relation ∼ is generated by v ∼ ϕij(v). Such an object
is an example of a quasi-bundle. So, informally speaking, a quasi-bundle is a
vector bundle, where the dimension of the fiber can jump.

Example 4. Given an open subspace U ⊂ X and a vector bundle V → U , the
extension by zero V ∪U X is a quasi-bundle over X.
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Definition 5. A vector space object over X consists of a space V → X, and
three continuous maps

+ : V ×X V → V, 0 : X → V, × : R× V → V,

equipping each fiber of V → X with the structure of a vector space.

Given a point x ∈ X, a germ of vector bundle around x consist of a pair
V = (U , V ), where U is a neighborhood of x, and V is a vector bundle over U .
If U ′ ⊂ U is a smaller neighborhood, we wish to identify (U , V ) with (U ′, V |U ′).
The correct way to do this is to form a category Germs(X,x), whose objects
are pairs (U , V ) as above, and whose morphisms are given by

hom
(
V1,V2

)
:= colim

U ′⊂U1∩U2

hom
(
V1|U ′ , V2|U ′

)
, (6)

where the colimit is taken over all neighborhoods U ′ of x. The objects (U , V )
and (U ′, V |U ′) are then canonically isomorphic in that category. Similarly, we
have the notion of germ of vector space object.

We shall refer to an element of (6) as a map, and write it f : V1 → V2. Such
a map is called injective, or inclusion, if it admits a representative V1|U ′ → V2|U ′

that is injective. Given a vector bundle V (or vector space object), and a point
x ∈ X, we denote by V〈x〉 := (X,V ) ∈ Germs(X,x) the germ of V at x.

Definition 6. [defQ] A quasi-bundle V over X is a vector space object over X.
It comes equipped with a germ of vector bundle Vx around each point x ∈ X,
and an inclusion ιx : Vx →֒ V〈x〉 subject to the following three conditions:

• The maps ιx induce isomorphisms Vx|{x} ≃ V |{x}.

• For each x ∈ X, there is a representative Vx|U ′ → V |U ′ of ιx, such that
for all y ∈ U ′, the map (Vx)〈y〉 → V〈y〉 factors through Vy.

• The topology on V is the weakest one making (representatives of) the maps
ιx continuous.

A morphism of quasi-bundles is a continuous map F : V → W that commutes
with the projection to X, that is linear in each fiber, and that sends Vx into
Wx for each x ∈ X.

Remark. If X is a CW-complex, the condition F (Vx) ⊂Wx is a consequence
of the continuity of F . In such case, the underlying vector space object of a
quasi-bundle contains all the information.

Remark. The weakest topology on V is independent of the choice of represen-
tatives for ιx.

Most constructions2 with vector bundles have well defined extensions to
quasi-bundles. For example, we have pullbacks, direct sums and tensor products.

2To be precise, we need the construction to be functorial with respect to monomorphisms
of vector bundles. This excludes contravariant things, such as taking the dual.
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Given a map f : X → Y , and a quasi-bundle V → Y , the pullback W :=
V ×X Y is a vector space object. It comes with germs Wx := f∗(Vf(x))〈x〉,
and inclusions Wx →֒ W〈x〉 satisfying the first two condition of Definition 6.
But the third condition need not be satisfied. The pullback quasi-bundle f∗V
is defined by retopologizing W .

Like for vector bundles, we define a scalar product on V to be a continuous,
fiberwise bilinear map 〈 , 〉 : V ×X V → R that is positive definite on each
fiber. Given a quasi-bundle with positive definite scalar product, we say that
an operator is self-adjoint, respectively positive, if it is so fiberwise. If F is a
self-adjoint operator, we recall that its absolute value is given by |F | :=

√
F 2.

Lemma 7. [Tle] (a). Let V , W be two quasi-bundles, and let F : V → W be a
morphism that is invertible on each fiber. Then F−1 : W → V is a morphism
of quasi-bundles.

(b). Let V be a quasi-bundle with positive definite scalar product, and let
F : V → V be a selfadjoint operator. Then |F | : V → V is morphism of
quasi-bundles.

Proof. Given a point x ∈ X, let Vx = (U , Vx) and Wx = (U ′,Wx) be the
corresponding germs of vector bundles. Since F (Vx) ⊂ Wx, there exists an
open V ⊂ U ∩ U ′ such that F (Vx|V) ⊂Wx|V .

(a). Since F (Vx|V) ⊂ Wx|V and since Vx and Wx have same rank, we
also have that F−1

(
Wx|V

)
⊂ Vx|V . The map F−1 : Wx|V → Vx|V is clearly

continuous. The topology on W begin the colimit of its subspaces Wx|V , it
follows that F−1 is continuous, and thus a morphism of quasi-bundles.

(b). We now assume that W = V has a scalar product. Since F (Vx|V) ⊂ Vx|V
and F is self-adjoint, we have |F |

(
Vx|V

)
⊂ Vx|V . By the same argument as

above, this implies the continuity of |F |. �

Remark. The adjoint F ∗ of a morphism F is not always a morphism.

The following lemma is key to a lot of our arguments. The details of defintion
6 are tuned so as to make its proof go through.

Lemma 8. [KLem] Let V be a Z/2-graded quasi-bundle with scalar product, and
let E,F : V → V be odd self-adjoint operators that graded-commute. Then if E
is invertible, so is E + F .

Proof. By Lemma 7.a, and because self-adjointness is defined fiberwise, it is
enough to treat the case when V is a vector space.

Since E and F are self-adjoint, their squares are positive operators. More-
over, since E is invertible, we have E2 > 0. It follows that

(E + F )2 = E2 + EF + FE + F 2 = E2 + F 2 > 0,

and in particular that (E + F )2 is invertible. Hence so is E + F . �

The construction described in the beginning of this section provides examples
of quasi-bundles. In fact, all quasi-bundles are of that form.
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Lemma 9. [AoE] Let V → X be a quasi bundle. Then there exists an open cover
{Un}n∈N of X, and rank n vector bundles Wn ⊂ V |Un

such that V =
⋃

Wn,
and such that [wugu]

Wn

∣∣
Un∩Um

⊂Wm

∣∣
Un∩Um

(7)

for all n < m.

Proof. Let Fn be the subset of X over which V has rank n. The rank being a
lower semi-continuous function, Fn is closed in X \ (F0 ∪ . . . ∪ Fn−1). We shall
construct open subsets Un, Ûn ⊂ X satisfying

Fn ⊂ Un ⊂ Un ⊂ Ûn ⊂ X \ (F0 ∪ . . . ∪ Fn−1),

and rank n vector bundles Wn over Ûn satisfying (7). Here, Un refers to the
closure of Un inside of X \ (F0 ∪ . . . ∪ Fn−1).

Assume by induction that Un, Ûn Wn have been constructed for all n < m.
Given x ∈ Fm, we may pick a representative f : Vx|Vx

→ V |Vx
of ιx subject

to the following condition. Let Zx := f(Vx|Vx
). If n < m is such that x ∈ Ûn,

then we require that Vx ⊂ Ûn and that Zx ⊂ Wn|Vx
. Otherwise, we ask that

Vx∩Un be empty. In that way, we get an open cover {Vx}x∈Fm
of Fm, and rank

n sub-bundles Zx ⊂ V .
Pick a locally finite refinement {Vi}i∈I of {Vx}, and let Zi → Vi be the

vector bundles induced by the Zx. The inclusions Zi →֒ X being morphisms of
quasi-bundles, there exists an open neighborhood Ûm of Fm such that

Zi

∣∣
Vi∩Vj∩Ûm

= Zj

∣∣
Vi∩Vj∩Ûm

for all i, j ∈ I. The Zi then assemble to a vector bundle Wm over Ûm satisfying

Wn

∣∣
Un∩Ûm

⊂Wm

∣∣
Un∩Ûm

for all n < m. We finish the induction step by picking a neighborhood Um of
Fm whose closure is contained in Ûm. �

Lemma 10. [KerBot] Let V be a quasi-bundle equipped with a scalar product, and
let F : V → V be a positive operator. Then W := ker(F )⊥ is naturally a
quasi-bundle.

Proof. Given a point x ∈ X, we must construct the corresponding germ Wx ⊂
W〈x〉. Let Vx = (U , Vx) be the germ corresponding to V , and let us take U small
enough so that F (Vx) ⊂ Vx. Since F |Vx

is a positive operator, its eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λdim(Vx) ≥ 0,

are continuous functions on U with values in R≥0. Letting r := dim(W |{x}), we
then have

λ1(x) ≥ λ2(x) ≥ . . . ≥ λr(x) > 0 = λr+1(x) = . . . = λdim(Vx)(x).
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Let U ′ ⊂ U be the open subset defined by the equation λr > λr+1. Over U ′ we
can then split Vx as

Vx|U ′ = Y ⊕ Z,

where Y is the r dimensional subbundle spanned by the eigenspaces correspond-
ing to λ1, . . . , λr, and Z is its orthogonal complement. We have Y |{x} = W |{x},
and Wx := (U ′, Y ) is our desired germ of vector bundle.

The subspace topology fails the last condition in Definition 6, so we retopol-
ogize W , and then it becomes a quasi-bundle. �

3 K-theory

The following definition was inspired by the notion of perfect complex (used
in algebraic K-theory of schemes [11]), by that of Kasparov cocycle (used in
K-theory of C∗-algebras [7]), and by Furuta’s notion of “vectorial bundle” [5]
(see also [6]).

Definition 11. [defV] A K-cocycle is a pair (V, F ), where V is a Z/2-graded
quasi-bundle equipped with a scalar product, and F is an odd self adjoint operator
on V . Moreover, one should be able to write (V, F ) locally as an orthogonal direct
sum (V ′, F ′) ⊕ (V ′′, F ′′), where V ′ is a vector bundle, and F ′′ is an invertible
operator.

Here is an impressionistic picture of a K-cocycle. The shaded areas represent
the pieces where the operator F is required to be invertible.
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There is an obvious extension of Definition 11 that incorporates Clifford
algebra actions. Namely, one requires that V be equipped with a Cl(n) action,
that F graded-commutes with the operators coming from the Clifford action,
and that the local splittings V ≃ V ′ ⊕ V ′′ be splittings of Cl(n)-modules. We
shall call such an object a Cl(n)-linear K-cocycle.

In the sequel, we will often abuse notation and denote a K-cocycle simply
by V instead of (V, F ). Given two K-cocycles V0, V1 on X, we say that V0

and V1 are homotopic if there exists a K-cocycle W over X × [0, 1] such that
Vi ≃W |X×{i}. Given a K-cocycle V on X and a subspace A ⊂ X, we say that
V is trivial over A if the operator F is invertible on V |A. Given two K-cocycles
V0, V1 on X that are trivial over A, we say that they are homotopic relatively
to A if the homotopy W can be chosen so that it is trivial over A× [0, 1].
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Definition 12. [defKO] The n-th real K-theory group KOn(X) of a topological
space X is the set of homotopy classes of Cl(−n)-linear K-cocycles over X.

If A is a subspace of X, the corresponding relative group KOn(X,A) is the
set of equivalence classes of Cl(−n)-linear K-cocycles over X that are trivial
over A, where two K-cocycles are declared equivalent if they are homotopic
relatively to A.

Remark. Note that by definition, we have KOn(X) = KOn(X, ∅).
There is an obvious map [VtoK]

{
Vector bundles on X

}
→ KO0(X)

V 7→ (V, 0)
(8)

given by picking a scalar product on V , and putting it in even degree. That
map is well defined because all scalar products are homotopic. We will show
in Section 8 that if X is compact, then (8) induces an isomorphism after group
completion.

Remark. Unlike for n = 0, the natural map
{
Z/2-graded vector bundles with Cl(−n) action

}
→ KOn(X)

is typically not surjective, even if X is compact. This can be seen most easily
in the case of complex K-theory for n = 1, and X = S1.

With the above definition, Bott periodicity is an essentially trivial conse-
quence of Theorem 3.

Theorem 13 (Bott Periodicity). We have natural isomorphisms KOn(X) ≃
KOn+8(X) and KOn(X,A) ≃ KOn+8(X,A).

Proof. Let Cl(−n−8)MCl(−n) be a bimodule implementing the Morita equivalence
between Cl(−n−8) and Cl(−n). The functor M⊗Cl(−n)− is then an equivalence
between the categories of Cl(−n)-linear and Cl(−n− 8)-linear K-cocycles over
X. That equivalence respects the notion of homotopy, and that of being trivial
over A. So it descends to an isomorphism of K groups. �

What remains to be done, is to identify the theory of Definition 12 with the
usual definition of real K-theory via vector bundles. Let us write KO∗

Atiyah for
the theory defined in [1].

First of all, we will show that for X compact, KO0(X) is isomorphic to
KO0

Atiyah(X), namely to the group completion of the monoid of isomorphisms
classes of vector bundles over X. If X has a base point, we will then show that
KO0(X, ∗) is isomorphic to

K̃O
0

Atiyah(X) := ker
(
KO0

Atiyah(X)→ KO0
Atiyah(∗)

)
.

Then, we will prove that for n ≤ 0, there is an isomorphism

KOn(X, ∗) ≃ K̃O
n

Atiyah(X) := K̃O
0

Atiyah(Σ−nX).
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Finally, we will show that KOn satisfies excision, which will then imply that
KOn(X,A) ≃ KOn(X/A, ∗), and thus that

KOn(X,A) ≃ KOn
Atiyah(X,A) := K̃O

n

Atiyah(X/A).

These results will be proved in Theorem 28, Lemma 21, Theorem 25, and Lemma

18 respectively. The isomorphism KOn(X) ≃ KOn
Atiyah(X) := K̃O

n

Atiyah(X⊔∗)
will then follow from the following rather trivial special case of excision

KOn(X) ≃ KOn(X ⊔ ∗, ∗).

4 Elementary properties

In this section, we derive some elementary properties of the functor KO.

Lemma 14. [Linc] Let (V, F ) be a K-cocycle, and let (W,G) ⊂ (V, F ) be a sub-
cocycle, such that F is invertible on the orthogonal complement of W . Then V
and W represent the same element in K-theory.

Proof. The homotopy between V and W is given by V ×[0, 1)∪W×[0,1)W×[0, 1].
�

Lemma 15 (Homotopy). [L:hom] If f, g : X → Y are homotopic maps, then
f∗ = g∗ : KO∗(Y )→ KO∗(X).

Proof. Let V be a K-cocycle over Y , and let h : X × [0, 1]→ Y be a homotopy
between f and g. The pull back of h∗V is then a homotopy between f∗V and
g∗V . �

The obvious analogs of Lemmas 14 and 15 also hold for pairs of spaces.

Corollary 16. Homotopy equivalent pairs have isomorphic K-groups. �

Let Rep(Cl(n)) be the semigroup of isomorphism classes of representations
of Cl(n). And let Rep◦(Cl(n)) ⊂ Rep(Cl(n)) denote those representations that
admit an extra Cl(1)-action, graded-commuting with the existing Cl(n)-action.

Proposition 17 (Coefficients). [Coef] There is a canonical isomorphism

KO−n(∗) ≃ Rep(Cl(n))
/
Rep◦(Cl(n)).

Proof. Let φ : Rep(Cl(n))→ KOn(∗) be the map given by φ([V ]) := [(V, 0)]. If
[V ] ∈ Rep(Cl(n)) has an extra Cl(1)-action e : V → V , then the K-cocycle

(
V × [0, 1) ∪[0,1) [0, 1], Ft :=

{ 0 if t = 1
te if t < 1

)

provides a homotopy between (V, 0) and zero. It follows that φ([V ]) = 0 for
[V ] ∈ Rep◦(Cl(n)), and so we get an induced map

φ̄ : Rep(Cl(n))
/
Rep◦(Cl(n))→ KO−n(∗).
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The map φ̄ is surjective since any (V, F ) is homotopic to (V, 0).
To see that φ̄ is injective, consider [V ] such that φ̄([V ]) = 0. Pick a homotopy

(W,G) between (V, 0) and 0, an open cover {Ui} of [0, 1], and decompositions

(W |Ui
, F |Ui

) = (W ′
i , F

′
i )⊕ (W ′′

i , F ′′
i ),

where W ′
i are vector bundles, and F ′′

i invertible. By compactness, we may
assume that [ti, ti+1] ⊂ Ui, for some 0 = t0 < t1 . . . < tn = 1. Replacing F ′′

i by
F ′′

i /|F ′′
i |, we see that W ′′

i−1|{ti} and W ′′
i |{ti} are in Rep◦(Cl(n)). It follows that

W ′
i−1|{ti} ≡W ′

i−1|{ti} ⊕W ′′
i−1|{ti} = W ′

i |{ti} ⊕W ′′
i |{ti} ≡W ′

i |{ti}

in the quotient Rep(Cl(n))/Rep◦(Cl(n)). Upon trivializing W ′
i |[ti,ti+1], we may

identify W ′
i |{ti} with W ′

i |{ti+1}. So we get

V = W ′
0|{t0} ≃W ′

0|{t1} ≡W ′
1|{t1} ≃W ′

1|{t2} ≡W ′
2|{t2} · · · ≃W ′

n|{tn} = 0.

�

Remark. The groups Rep(Cl(n))/Rep◦(Cl(n)) are computed in [2] using ele-
mentary methods. They are given by:

n mod 8 0 1 2 3 4 5 6 7
Rep(Cl(n))/Rep◦(Cl(n)) Z Z/2 Z/2 0 Z 0 0 0

By computation of the relevant semigroups, one also sees that a class [V ] is zero
in Rep(Cl(n))/Rep◦(Cl(n)) if and only if V belongs to Rep◦(Cl(n)).

Lemma 18 (Excision). [L:exc] Let (X,A) be a pair of spaces, and let U be a
subspace of A with the property that there exist disjoint opens U1,U2 ⊂ X such
that U ⊂ U1 and U2 ∪A = X. Then the restriction map

r : KOn(X,A)→ KOn(X \ U,A \ U)

is an isomorphism.

Proof. The inverse of r is given by extension by zero: it sends a K-cocycle V
over X \ U to the K-cocycle

s(V ) := V |X\Ū ∪
X\Ū

X,

where Ū denotes the closure of U . The equation r ◦s = 1 is clear. The equation
s ◦ r = 1 follows from Lemma 14. �

Corollary 19. [x/a] Let X be a space, and let A ⊂ X be a neighborhood defor-
mation retract. Then KOn(X,A) ≃ KOn(X/A, ∗).

Proof. Let CA be the cone on A. Applying excision and then homotopy invari-
ance, we get KOn(X,A) ≃ KOn(X ∪A CA,CA) ≃ KOn(X/A, ∗). �
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Lemma 20 (Group structure). The operation of direct sum equips KOn(X)
and KOn(X,A) with the structure of abelian groups.

Proof. It is quite clear that direct sum descends to K-theory, and so that
KOn(X) and KOn(X,A) are abelian monoids. We must show the existence of
inverses.

Given a K-cocycle (V, F ), its inverse in K-theory is given by (V̄ , F ), where
V̄ := V ⊗ R

0|1 denotes the bundle with reversed Z/2-grading. The homotopy
(W,G) between (V ⊕ V̄ , F ⊕ F ) and the zero bundle is given by

W := (V ⊕ V̄ )× [0, 1) ∪
X×[0,1)

X × [0, 1] → X × [0, 1],

and the action of G on the fiber W(x,t) is given by

G(x,t) :=





0 if t = 1,(
Fx tγ
tγ Fx

)
if t < 1,

where γ denotes the grading involution.
To see that W is indeed a K-cocycle, we note that by Lemma 8, the operator

G(x,t) =

(
0 tγ
tγ 0

)
+

(
Fx 0
0 Fx

)

is invertible as soon as t > 0. Over the subspace X × (0, 1], the pair (W,G)
is a K-cocycle because G is invertible. And over X × [0, 1), it is a K-cocycle
because (V, F ) was one. �

Remark. The inverse K-cocycle (V̄ , F ) can be rewritten more suggestively as
(V ⊗ R

0|1, F ⊗ 1 + 1⊗ 0), see Lemma 22 below.

From the above lemma, we see that the map {Vector bundles on X} →
KO0(X) factors through KO0

Atiyah(X). In section 8, we will show that that
map is an isomorphism whenever X is compact.

Lemma 21. [L:bp] Let X be a space, with base point ι : ∗ → X. Then the
restriction map KOn(X, ∗)→ KOn(X) induces an isomorphism [kkrl]

r : KOn(X, ∗) ∼−→ ker
(
ι∗ : KOn(X)→ KOn(∗)

)
.

Proof. If [(V, F )] is in ker(ι∗), then by Proposition 17, the Cl(n)-module ι∗V
admits an extra Cl(1)-action e : ι∗V → ι∗V . Pick a neighborhood U of the base
point, and a splitting

(V |U , F |U ) = (V ′, F ′)⊕ (V ′′, F ′′)

with V ′ a trivial vector bundle, and F ′′ invertible. Let ϕ : X → R≥0 be a
function with support contained in U , and such that ϕ(∗) > ‖F ′|{∗}‖. Then

ϕe⊕ 0 : V ′ ⊕ V ′′ → V ′ ⊕ V ′′

11



extends by zero to an operator E : V → V . Since (E + F )|{∗} is invertible,
(V,E + F ) is a cocycle for KOn(X, ∗). The cocycles (V,E + F ) and (V, F )
being homtopic via (V, tE + F ), t ∈ [0, 1], this shows that r is surjective.

To see that r is injective, consider a class [(V, F )] ∈ KOn(X, ∗) that maps to
zero in KOn(X). By definition, there is a homotopy (W,G) between (V, F ) zero.
Our goal is to find a new homotopy (W̃ , G̃) such that G̃|{∗}×[0,1] is invertible.
Let p : X → ∗ be the projection. Since [p∗ι∗(V, F )] = 0, we may as well
construct a homotopy between [(V, F )⊕ p∗ι∗(V, F )] and zero. We set

W̃ := [W ⊕ p∗ι∗W̄ ].

Let {Ui} be a finite collection of open subsets of X×[0, 1] covering {∗}×[0, 1].
And let us assume that we have decompositions

(W |Ui
, G|Ui

) = (W ′
i , G

′
i)⊕ (W ′′

i , G′′
i ),

where W ′
i are trivial vector bundles and G′′

i are invertible. We may assume that
p(Ui) ⊂ Ui. We then get corresponding decompositions

W̃ |Ui
= W ′

i ⊕ p∗ι∗W̄ ′
i ⊕W ′′

i ⊕ p∗ι∗W̄ ′′
i ,

and identifications W ′
i ≃ p∗ι∗W ′

i . Let ϕi : X × [0, 1] → R≥0 be functions with
support in Ui, and such that

∑
ϕi|{∗}×[0,1] > 0. Let γ : W ′

i → W ′
i ≃ p∗ι∗W ′

i

denote the grading involution. The operator
(

0 ϕiγ
ϕiγ 0

)
⊕ 0 ⊕ 0 : W̃ |Ui

→ W̃ |Ui

then extends by zero to an odd operator Ei : W̃ → W̃ . We define

G̃ :=
(
G⊕ p∗ι∗G

)
+

∑
Ei

Given a point x = (∗, t) ∈ X× [0, 1], we now show that G̃|{x} is invertible. For i

such that ϕi(∗, t) > 0, let qi denote the projection of W̃ |{x} onto the summand
(W ′

i ⊕ p∗ι∗W̄ ′
i )|{x} = W ′

i |{x} ⊕ W̄ ′
i |{x}. We then have

G̃|{x} =

(
G|{x} 0

0 G|{x}

)
+

(
0

∑
qiϕi(x)γ∑

qiϕi(x)γ 0

)

The first summand is invertible on each im(qi), and hence on their linear span.
The second summand is invertible on the intersection of the im(qi). So by
Lemma 8, G̃|{x} is invertible on W̃ |{x} = span{im(qi)} ⊕

⋂
im(qi). �

Lemma 22 (Ring structure). [L:R] The operation [topro]

((V, F ), (W,G)) 7→ (V ⊗W, F ⊗ 1 + 1⊗G) (9)

induces an associative, graded-commutative product on KO∗(X). Moreover, if
(V, F ), (W,G) are classes in KO∗(X,A) and KO∗(X,B) respectively, then their
product naturally lives in KO∗(X,A ∪B).
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Proof. To see that (9) defines a K-cocycle, write (V, F ), (W,G) locally as

(V, F ) = (V ′, F ′)⊕ (V ′′, F ′′),

(W,G) = (W ′, G′)⊕ (W ′′, G′′),

where V ′, W ′ are vector bundles, and F ′′, G′′ are invertible. We can then
decompose (V ⊗W, F ⊗ 1 + 1⊗G) as (Z ′,H ′)⊕ (Z ′′,H ′′), with

Z ′ = V ′ ⊗W ′

H ′′ =
(
F ′ ⊗ 1 + 1⊗G′′

)
⊕

(
F ′′ ⊗ 1 + 1⊗G′

)
⊕

(
F ′′ ⊗ 1 + 1⊗G′′

)
.

By Lemma 8, each summand of H ′′ is invertible. Thus so is H ′′. Since Z ′ is a
vector bundle, (9) is indeed a K-cocycle. If F is trivial over A, and G is trivial
over B, Lemma 8 also ensures that F ⊗ 1 + 1⊗G is trivial over A ∪B.

If (V, F ) and (W,G) come with Cl(n) and Cl(m) actions, then their product
aquires an action of Cl(n)⊗Cl(m). Let D = Dn,m be the bimodule constructed
in Lemma 33, implementing the Morita equivalence between Cl(n + m) and
Cl(n)⊗ Cl(m). We then get a product [PrK]

KO−n
(
X

)
×KO−m

(
X

)
→ KO−n−m

(
X

)
[
(V, F )

]
·
[
(W,G)

]
:=

[(
D ⊗

Cl(n)⊗Cl(m)

(V ⊗W ), 1D ⊗ (F ⊗ 1 + 1⊗G)
)]

,
(10)

and its associativity is garanteed by the first part of Lemma 33.
We now show that this product is graded-commutative, i.e. that it satisfies

[(V, F )] · [(W,G)] = (−1)nm [(W,G)] · [(V, F )]. (11)

For that purpose, we need to compare the modules Dn,m⊗(V ⊗W ) and Dm,n⊗
(W ⊗ V ). Let θ : Cl(n) ⊗ Cl(m) → Cl(m) ⊗ Cl(n) denote the commutor
isomorphism, and let Dθ

m,n := Dm,n denote the (Cl(n + m), Cl(n)⊗ Cl(m))-
bimodule, whose right action is precomposed by θ. The map W ⊗ V → V ⊗W
then induces a Cl(n + m)-module isomorphism

Dm,n ⊗ (W ⊗ V ) ≃ Dθ
m,n ⊗ (V ⊗W ),

intertwining the actions of F ⊗ 1 + 1 ⊗ G and G ⊗ 1 + 1 ⊗ F . The graded
commutativity follows from the second part of Lemma 33. �

5 Further properties of K-cocycles

In this section, we list some further properties of K-cocycles, that are of more
technical nature. We begin with a sight strengthening of Lemma 14.

Lemma 23. [Linc2] Let (V, F ) be a Cl(−n)-linear K-cocycle. Let W be a quasi-
bundle contained in V , that is invariant under F and under the action of
Cl(−n).

If the restriction of F is invertible on W⊥, then (W,F |W ) is a K-cocycle
and represents the same class as (V, F ).
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Proof. By Lemma 14, the only thing that we need to check is that (W,F |W ) is a
K-cocycle. Pick a point x in the base and let Wx = (Ux,Wx) and Vx = (Vx, Vx)
be the corresponding germs of vector bundles. Since (V, F ) is a K-cocycle, there
is a neighborhood U of x and a decomposition

(V |U , F |U ) = (V ′, F ′)⊕ (V ′′, F ′′)

with V ′ is a vector bundle and F ′′ and invertible operator. We have V ′ ⊂ Vx

around x. So we may modify V ′ and assume that V ′ = Vx|U . We can also
assume that that Wx|U ⊂ Vx|U .

The operator F is invertible on (V ′ ⊖Wx)|{x}. Since V ′ ⊖Wx is a vector
bundle, there is a neighborhood V ⊂ U of x on which F |V ′⊖Wx

is invertible.
Consider the decomposition

(W,F ) = (Wx, F |Wx
)⊕ (W ⊖Wx, F |W⊖Wx

)

on V. To finish the proof, we need to show that F is invertible on (W ⊖Wx)|V .
This is indeed the case since W ⊖Wx is contained in (V ′⊖Wx)⊕ V ′′ and since
F is invertible on both (V ′ ⊖Wx)|V and V ′′|V . �

Recall that by Lemma 9, every quasi-bundle can be written as a union of
vector bundles, where the union is taken over a coherent system of inclusions.
The following extends of this result to K-cocycles.

Lemma 24. [coi] Let (V, F ) be a Cl(k)-linear K-cocycle on X. Then there exist
an open cover {Un}n∈N and rank n vector bundles Wn ⊂ V that are F -invariant,
Cl(k)-invariant, satisfy V =

⋃
Wn, and satisfy Wn|Un∩Um

⊂ Wm|Un∩Um
for

n < m. Moreover, {Un} can be chosen such that given any refinement {U ′
i},

U ′
i ⊂ Un(i), the expression

(W,F |W ), W :=
⋃

Wn(i)|U ′
i
,

is a K-cocycle, and represents the same class as (V, F ).

Proof. By Lemma 9, there is a cover {Vn}n∈N of X, and vector bundles Wn ⊂
V |Vn

such that
⋃

Wn = V , and such that Wn|Vn∩Vm
⊂ Wm|Vn∩Vm

whenever
n < m. Let Un ⊂ Vn be the biggest open subsets on which Wn is F -invariant,
Cl(k)-invariant, and such that F |W⊥

n
is invertible. If x ∈ X is a point over which

V has ran n, then x necessarily belongs to Un. Hence, V =
⋃

Wn as desired.
Now let {U ′

i} be a refinement of {Un}. Since F |U ′
i

is invertible on W⊥
n(i), and

since every point belongs to some U ′
i , the result follows from Lemma 23. �

6 The suspension axiom

Let X be a well pointed space. In this section, we shall construct an isomor-
phism between KO−n(X, ∗) and KO0(ΣnX, ∗). Here, ΣnX denotes the reduced
suspension

ΣnX := X × In
/
X × ∂In ∪ {∗} × In.
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By Lemma 19, we have KO0(ΣnX, ∗) ≃ KO0(X × In,X × ∂In ∪ {∗}× In). So
it is enough to prove the following:

Theorem 25. [Sus] Let (X,A) be a pair of topological spaces, and let I := [−1, 1].
Then there exists an isomorphism

KOn−m(X,A) ≃ KOn(X × Im, X × ∂Im ∪A× Im),

The following is a useful result about K-cocycles on spaces of the form X×I.

Definition 26. A K-cocycle in product form on X×I consists of a pair (W,F ),
where W → X is a Z/2-graded quasi-bundle with scalar product, and F is an odd
self adjoint operator on W ×I. Moreover, around every point of X, there should
exist an orthogonal decomposition W = W ′⊕W ′′ with W ′ a vector bundle, and
an invertible operator G on W ′′ inducing a decomposition

(W × I, F ) = (W ′ × I, F ′)⊕ (W ′′ × I,G× I).

A K-cocycle in product form is informally denoted (W × I, F ).
Two K-cocycles in product form (Wi × I, Fi), i = 0, 1, are homotopic in

froduct form if there exists a K-cocycle in product form (Ŵ×I, F̂ ) over [0, 1]×Y
such that (Ŵ × I, F̂ )|{i}×Y ≃ (Wi × I, Fi) for i = 0, 1.

Lemma 27. [lara] Let X be a space, and A a subspace of X×I. Then the natural
map [PrF]

{
Cl(−n)-linear K-cocycles in prod-
uct form on X × I, trivial on A

}/{
homotopy in product
form, relatively to A

}

−→ KOn(X×I,A)

(12)

is an isomorphism.

Proof. We first show that (12) is surjective. Let (V, F ) be a K-cocycle on X×I,
trivial on A. Pick an open cover {Un} of X × I as in Lemma 24, and chose a
locally finite refinement of the form {Vi × (ai, bi)}i∈J , for some opens Vi ⊂ X.
Let

W :=
⋃

Wi|Vi×(ai,bi),

where we have abbreviated Wn(i) by Wi. By Lemma 24, (W,F |W ) is then a
K-cocycle and represents the same class as (V, F ).

indexed by an ordered set J , and vector bundles Wi ⊂ V |Ui
such that

⋃
Wi =

V , and such that Wi|Ui∩Uj
⊂Wj |Ui∩Uj

whenever i < j.
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Let U ′
i ⊂ Ui be the biggest open subsets on which Wi is invariant under

F , invariant under the Cl(−n)-action, and such that F |W⊥
i

is invertible. Since⋃
Wi = V , the sets U ′

i also form an open cover of X×I. Refine {U ′
i} to a locally

finite open cover {U ′′
i } whose elements are of the form U ′′

i = Vi × (ai, bi)
∗ for

some opens Vi ⊂ X and (ai, bi)
∗ ⊂ I. Here, our notation (a, b)∗ refers to the

interior of [a, b] in I, which is bigger than (a, b) if a = −1 or b = 1. Let

V ′ := Span
{
Wi

∣∣
Vi×(ai,bi)

}
.

By Lemma 23, the K-cocycles (V, F ) and (V ′, F |V ′) represent the same class in
KOn(X × I,A).

�

Given a quasi-bundle V with a scalar product and a self adjoint operator
F : V → V , we define nF : ker(F )⊥ → ker(F )⊥ by

nF :=
F

|F | .

It satisfies (nF )2 = 1. Note also that ker(F )⊥ = ker(F 2)⊥ is a quasi-bundle by
Lemma 10.
Proof of Theorem 25. By induction, it is enough to treat the case m = 1. An
element of KOn−1(X,A) is represented by a Cl(−n)-linear K-cocycle (V, F ),
equipped with an extra Cl(1)-action that graded commutes with F

e : V → V, e2 = 1, eF = −Fe.

Given such a K-cocycle, we can construct a K-cocycle (W,G) on X × I by
letting the underlying Cl(−n)-linear quasi-bundle be W := V × I, and letting
the operator G : W →W act on the fiber Wx,t = Vx by the formula

Gx,t := Fx + tex.

That K-cocycle is trivial on A× I ∪X×∂I, and thus defines a class in Kn(X×
I,X × ∂I ∪A× I).

We now wish to construct the inverse homomorphism

Kn(X × I, X × ∂I ∪A× I)→ KOn−1(X,A).

For technical reasons, it shall be easier to construct a map with values in

Kn−1(X × {1} ∪A× [0, 1], A× {0}). (13)

Given a Cl(−n)-linear K-cocycle on X×I that is trivial on X×∂I∪A×I, then
by Lemma 27, we may replace it by an equivalent one (W,G) whose underlying
quasi-bundle is a product W = Ṽ ×I. The corresponding Cl(−n)⊗Cl(1)-linear
K-cocycle (V, F ) on X × {1} ∪ A × [0, 1] is defined as follows. Its underlying
quasi-bundle is given by

Vx,t := ker(nGx,t − nGx,−t)
⊥.
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The odd self adjoint operator is

Fx,t :=
1

2
(nGx,t + nGx,−t),

and the extra Cl(1)-action is given by

ex,t := n(nGx,t − nGx,−t).

We first note that the operators nGx,t and nGx,−t are globally defined for all
(x, t) ∈ X ×{1} ∪A× [0, 1]. So Fx,t and ex,t are well defined on Vx,t. It is then
an easy exercise to check that (nGx,t + nGx,−t) and (nGx,t − nGx,−t) graded
commute, from which it follows that Fx,t and ex,t also graded commute. [As
constructed, (V, F ) is not going to be a K-cocycle. I have some ideas how to
fix all that, but it needs more work... ] The K-cocycle (V, F ) begin trivial over
A× {0}, it defines a class in (13).

It remains to check that the assignments (V, F ) 7→ (W,G, e) and (W,G, e) 7→
(V, F ) are homotopy inverses. This is done by writing down explicit homotopies.
[That whole proff still depends on Lemma 27, so there is no point in writing
down all the details...] �

7 The connecting homomorphism

Given an NDR pair, namely a pair of topological spaces A ⊂ X, such that A has
neighborhood U in X that deformation retracts back to A, we shall construct
a homomorphism δ : KOn−1(A)→ KOn(X,A).

8 Comparison with vector bundles

[secVB]

Unlike our theory, KO∗
Atiyah is only a cohomology theory when restricted to

compact spaces. So one cannot expect the map KO0
Atiyah(X)→ KO0(X) to be

an isomorphism when X is not compact. In this section, we will prove:

Theorem 28. [thm:VB] Let X be a compact space. Then the map [comparison]

KO0
Atiyah(X)→ KO0(X) (14)

induced by (8) is an isomorphism.

For technical reasons, it shall be convenient to work with a slightly stricter
notion of K-cocycle.

Definition 29. If a K-cocycle (V, F ) has the property that the operators F ′′ of
Definition 11 are orthogonal operators, then we call it a strict K-cocycle.

The following lemma says that any K-cocycle can be deformed to a strict
cocycle.
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Lemma 30. [lem:ortho] Let (V, F ) be a Cl(n)-linear K-cocycle over a space X.
Then F0 := F can be deformed through a family Ft, t ∈ [0, 1], of odd, self
adjoint, Cl(n)-linear operators in such a way that the following conditions are
satisfied:

For each point x ∈ X, there is a neighborhod N of x, and a decomposition
V |N = V ′ ⊕ V ′′, inducing corresponding decompositions [VN’]

(
V |N , Ft|N

)
=

(
V ′, F ′

t

)
⊕

(
V ′′, F ′′

t

)
, (15)

such that V ′ is a vector bundle, F ′′
t is invertible for all t ∈ [0, 1], and F ′′

1 is an
orthogonal operator. Moreover, if F ′′

0 |{y} was orthogonal for some y ∈ N , then
F ′′

t |{y} = F ′′
0 |{y} for all t.

Proof. Let {Ui}i∈I be a locally finite open cover of X for which we have decom-
positions (

V |Ui
, F |Ui

)
=

(
W ′

i , F
′
i

)
⊕

(
W ′′

i , F ′′
i

)
,

with W ′
i a vector bundle, and F ′′

i an invertible operator. Let {ϕi : X → R≥0}
be a partition of unity such that ϕi has support in Ui. Let

Hi :=

{
1W ′

i
⊕ |F ′′

i |−ϕi over Ui

1V over X \ supp(ϕi),

F̃t := F ·
∏

i∈I

Ht
i , Ft := 1

2 (F̃t + F̃ ∗
t ),

where we have picked an order on I to make sense of the product. The operator
Ft is clearly odd, self adjoint, and Cl(n)-linear. The existence of the adjoint F̃ ∗

t

follows from the special form of F̃t.
Given a point x ∈ X, we now describe the neighborhood N of x, and the

decomposition (15). Since V is a quasi-bundle, we have a germ Vx = (Ux, Vx)
around x, and an inclusion Vx →֒ V〈x〉. Pick a representative Vx|U →֒ V |U of
that inclusion, and define

Ni :=
{
y ∈ U : W ′

i |{y} ⊂ Vx|{y}

}

for all i such that x ∈ Ui. The set Ni is a neighborhood of x because W ′
i → V |Ui

is a morphism of quasi-bundles. Letting Ix := {i ∈ I |x ∈ Ui}, we define

N :=
⋂

i∈Ix

Ni ∩
⋂

i6∈Ix

(X \ supp(ϕi)),

V ′ := Vx|N , V ′′ := (V ′)⊥.

By the definition of Ni, we have W ′
i |Ni

⊂ V ′|Ni
for all i ∈ Ix. By taking

orthogonal complements, it follows that V ′′ ⊂ W ′′
i |N , and hence that Hi|V ′′ =∣∣F |V ′′

∣∣−ϕi
for i ∈ Ix. Since N doesn’t intersect the support of ϕi for i 6∈ Ix, we

have
∏

i∈I

Hi|V ′′ =
∏

i∈Ix

Hi|V ′′ =
∏

i∈Ix

∣∣F |V ′′

∣∣−ϕi
=

∣∣F |V ′′

∣∣−Σϕi
=

∣∣F |V ′′

∣∣−1
.
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From the above expression, we see that F ′′
t = Ft|V ′′ is given by

F ′′
t =

F |V ′′

∣∣F |V ′′

∣∣t .

This operator is invertible for t ∈ [0, 1], orthogonal for t = 1, and independent
of t whenever F ′′

0 is orthogonal. �

Corollary 31. [c:or] Modifying Definition 12 by only allowing strict K-cocycles
does not affect the groups KOn(X).

Proof. Let us call KO′ the K-theory groups defined using strict K-cocycles.
The forgetful map KO′n(X) → KOn(X) is surjective by Lemma 30. To see
that it is also injective, consider two strict K-cocycle whose image agrees in
KOn(X). By applying Lemma 30 to the homotopy, we see that their images
already agreed in KO′n(X). �

Given a strict K-cocycle (V, F ), we define a presentation to be an open cover
{Ui}, along with a family of orthogonal direct sum decompositions

(V |Ui
, F |Ui

) = (V ′
i , F ′

i )⊕ (V ′′
i , F ′′

i ),

where V ′
i are vector bundles, and F ′′

i are orthogonal operators.
We now show that, modulo replacing a strict K-cocycle by an equivalent

one, we can always embed it in a vector bundle.

Lemma 32. [lem:emb] Let X be a compact space, and let (V, F ) be a strict K-
cocycle over X. Then there exists a strict sub-cocycle (W,G) ⊂ (V, F ) such that
F |W⊥ is an orthogonal operator, and such that W is isometrically embeddable
in a trivial vector bundle X × R

n|m.

Proof. Let ({Ui}, (V ′
i , F ′

i ), (V
′′
i , F ′′

i )) be a presentation of (V, F ). Without loss
of generality, we may assume that the bundles V ′

i are tirvial:

V ′
i = Ui × R

ni|mi ,

and that the cover {Ui} is finite. Let {ϕi : X → R≥0} be a partition of unity
with supp(ϕi) ⊂ Ui, and let us define operators Hi : V → X × R

ni|mi by

Hi :=

{
ϕi · 1V ′

i
⊕ 0 over Ui

0 over X \ supp(ϕi).

Note that the adjoint H∗
i : X × R

ni → V is also a morphism of quasi-bundles.
Adding all the Hi, we get a map

H : V → X × R
Σni|Σmi

which, once again, admits an adjoint.
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Let W be the orthogonal complement of ker(H) = ker(H∗H); it is a quasi-
bundle by Lemma 10. Since H commutes with F , the latter restricts to an
operator G on W .

We now verify that (W,G) is a strict K-cocycle, and that F |W⊥ is an or-
thogonal operator. We check these facts on the opens Vi := ϕ−1

i (R>0). For the
first condition, we have the decomposition

W |Vi
= V ′

i |Vi
⊕ (V ′′

i ∩W )|Vi
,

where Vi|Vi
is a vector bundle, and where the restriction of G|Vi

to the second
summand is orthogonal. For the second condition, we note that

W⊥|Vi
= ker(H)|Vi

⊂ ker(Hi)|Vi
= V ′′

i |Vi

and that F |V ′′
i

is an orthogonal operator.

We now show that W can be isometrically embedded in X ×R
Σni|Σmi . The

operator H is injective on W , but typically not an isometry. However, the
restriction of H∗H to W is an isomorphism by Lemma 7.a, and so it makes
sense to write

H ′ := H|W ·
(
(H∗H)|W

)−1/2
: W → X × R

Σni|Σmi .

The latter is an isometric operator. �

Proof of Theorem 28. We first show that the map (14) is surjective. Let (V, F ) be
a K-cocycle. By Corollary 31, we may assume that (V, F ) is a strict K-cocycle,
and by Lemmata 32 and 14, we may assume that V embeds isometrically into
a trivial vector bundle X × R

n|m. Let us write V and F as

V = V0 ⊕ V1, F =

(
0 F1

F0 0

)
,

where V0, V1 are the even and odd parts of V , and where F0 : V0 → V1,
F1 : V1 → V0 are the components of F . Let ({Ui}, (V ′

i , F ′
i ), (V

′′
i , F ′′

i )) be a
presentation of (V, F ), and let

V ′
i = V ′

i,0 ⊕ V ′
i,1, V ′′

i = V ′′
i,0 ⊕ V ′′

i,1,

be the corresponding decompositions. Let ι denote the embedding V0 →֒ X×R
n,

and define

W0 := X × R
n = Pushout

(
V0 ← Span{V ′′

i,0}
ι→ Span{ι(V ′

i,0)
⊥}

)

W1 := Pushout
(
V1

F0← Span{V ′′
i,0}

ι→ Span{ι(V ′
i,0)

⊥}
)
.

Clearly, W0 is a vector bundle; we will soon show that this also holds for W1.
Let W be the Z/2-graded object with even part W0 and odd part W1. Since

F |Span{V ′′
i,0}

is an orthogonal operator, we have (F1 ◦ F0)|Span{V ′′
i,0}

= 1, and so
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the vertical arrows in

V0⊕V1

F

��

Span{V ′′
i,0}⊕Span{V ′′

i,0}
1⊕F0oo ι⊕ι //

(
0 1
1 0

)

��

Span{ι(V ′
i,0)

⊥}⊕Span{ι(V ′
i,0)

⊥}

(
0 1
1 0

)

��
V0⊕V1 Span{V ′′

i,0}⊕Span{V ′′
i,0}

1⊕F0oo ι⊕ι // Span{ι(V ′
i,0)

⊥}⊕Span{ι(V ′
i,0)

⊥}

induce a map G : W →W . Consider the decomposition

W1|Ui
= V ′

i,1 ⊕ (V ′
i,1)

⊥.

Each restriction G|Ui
is an orthogonal operator on (V ′

i,1)
⊥, and so we have an

isomorphism (V ′
i,0)

⊥ ≃ (V ′
i,1)

⊥. The former being a vector bundle, so is the

latter. It follows that W1|Ui
= V ′

i,1⊕ (V ′
i,1)

⊥ is a vector bundle. The Ui form an
open cover, hence W1 is a vector bundle.

We have an obvious embedding (V, F ) →֒ (W,G), and the restriction of G
to the complement of V is an orthogonal operator. So by Lemma 14, the two
cocycles (W,G) and (V, F ) are equal in K-theory. We have thus shown that
(V, F ) lies in the image of (14).

It remains to show that the map (14) is injective. Let [V0]− [V1] be a class
in KO0

Atiyah(X) whose image is zero in KO0(X). By definition, this means

that we have a K-cocycle (Ṽ , F̃ ) over X × [0, 1] whose restriction to X ×{0} is
(V0⊕V1, 0) and whose restriction to X×{1} is trivial. As before, we may assume
that (Ṽ , F̃ ) is strict and that Ṽ embeds in a trivial vector bundle. Applying
the same tricks as in the first part of the proof, we construct an embedding of
K-cocycles [tel]

(Ṽ , F̃ ) →֒ (W̃ , G̃), (16)

where W̃ is a vector bundle and G̃|Ṽ ⊥ is invertible.

Since W̃ is a vector bundle over X × [0, 1], we can write it as a product
W̃ = W × [0, 1], where W is a vector bundle over X. Moreover, since G̃|X×{1}

is invertible, the even and odd parts of W are isomorphic; let us call them Z.
Restricting (16) over X × {0}, we thus get an embedding

ι : V = V0 ⊕ V1 →֒W = Z ⊕ Z.

Since the complement of ι(V ) is equipped with as invertible odd operator, we
also get an isomorphism between the even and odd parts of ι(V )⊥; let us call
them Y . Thus, we have isomorphisms

V0 ⊕ Y ≃ Z, V1 ⊕ Y ≃ Z.

It follows that [V0] and [V1] are equal in KO0
Atiyah(X). �
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Appendix

In this appendix, we show that we can pick the bimodules (4), so that they
satisfy certain nice compatibility properties.

Lemma 33. [ZCl] The bimodules Dn,m can be chosen so that for any triple
n,m, r ∈ Z, one has bimodule isomorphisms [Das]

Dn+m,r ⊗
Cl(n+m)⊗Cl(r)

(Dn,m ⊗Cl(r)) ≃ Dn,m+r ⊗
Cl(n)⊗Cl(m+r)

(Cl(n)⊗Dm,r).

(17)
Letting θn,m : Cl(n)⊗Cl(m)→ Cl(m)⊗Cl(n) denote the commutor isomor-

phism, and Dθ
m,n be the bimodule Dm,n with right action precomposed by θn,m,

we then have [nm]

Dθ
m,n ≃

{
Dn,m if nm is even,

Dn,m ⊗ R
0|1 if nm is odd.

(18)

Proof. If n and m have same sign, we let Dn,m := Cl(n + m), with the obvious
actions. Pick a bimodule D1,−1 implementing (2). The bimodule D−1,1 is then
uniquely determined by the equation

Cl(1)

(
Cl(1)⊗D−1,1

)
Cl(1)⊗Cl(−1)⊗Cl(1)

≃
Cl(1)

(
D1,−1 ⊗ Cl(1)

)
Cl(1)⊗Cl(−1)⊗Cl(1)

.

That last equation is best understood graphically: [biY]

≃
D1,−1

D−1,1

(19)

If n > 0, m < 0, we let Dn,m be a tensor product of Cl(n + m) with
min(n,−m) copies of D1,−1. And if n < 0, m > 0, we define it as tensor product
of Cl(n + m) with min(−n,m) copies of D−1,1. Graphically, this becomes

Dn,m :=
,|n+m| |n+m|

|n|
|n|

|m|
|m|

if |n| ≥ |m| if |n| ≤ |m|

where the orientations of the lines depend on the signs of n and m, and the
little boxes are implicit.
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Let D∗
−1,1 denote the inverse bimodule of D−1,1, with defining equation

D−1,1 ⊗Cl(−1)⊗Cl(1) D∗
−1,1 ≃ R. The graphical computation

D1,−1

D−1,1

D−1,1

D∗
−1,1

D∗
−1,1D∗

−1,1

D∗
−1,1

D∗
−1,1

D∗
−1,1

≃≃
by (19)

then implies the relation [biY2]

≃
D1,−1

D−1,1

(20)

dual to (19). Armed with (19) and (20), it is now easy to check (17) case by case.
Depending on the relative sizes of n, m, and r, the graphical representation of
equation (17) is one of the following types (modulo vertical flip):

?
=

?
=

?
=

?
=

?
=

?
=

?
=

?
=

The first five are obviousely true; the last three follow from (19) and (20).
We now proceed to show (18). We use the notation V̄ := V ⊗R

0|1. If n and
m have same sign, then θn,m is a composite of nm transpositions, and so it is
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enough to show (18) for |n| = |m| = 1. In that case, the isomorphism can be
constructed explicitely as

Dθ
1,1 = Cl(2)→ D̄1,1 = C̄l(2) :

1 7→ e1 + e2, e1 7→ 1 + e1e2,
e2 7→ 1 + e2e1, e1e2 7→ e1 − e2.

Dθ
−1,−1 → D̄−1,−1 = C̄l(−2) :

1 7→ f1 + f2, f1 7→ −1 + f1f2,
f2 7→ −1 + f2f1, f1f2 7→ f2 − f1.

If n and m have different signs, then Dn,m and Dθ
m,n can be represented (modulo

vertical flip, and reorientation of the strands) by

|n+m|
|n+m|

|n| |n|

|m| |m|

and .

Let us simplify the above notation to

(p)

(p)

(q)

(q)
and ,

where p = |n + m| and q = |m| denote the multiplicities.
Equation (18) follows from the following two graphical computations. We

first evaluate

(p)
(q)

(q)

Dn,m⊗(R0|1)⊗nm =

(p)

(q)
⊗ (R0|1)⊗nm =

(p)
(p) (q)

(q)

(q)

θq,p+q⊗(R0|1)⊗nm

=

(p+q)
(p+q)

(q)
= ,

where the third equality follows from our previous computation and the fact
that (−1)q(p+q) = (−1)nm. We then evaluate

(p) (p)
(q) (q)

(q)

Dθ
m,n

= =

(p)
(p) (p)

(q) (q)
(p+q)== ,
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where the third equality is given by p applications of (19). By comparing the
above two computation, we deduce that Dθ

m,n = Dn,m ⊗ (R0|1)⊗nm. �
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