What Chern–Simons theory assigns to a point

André Henriques

2017

Chern–Simons theory

Parameters:

- *G*, a compact Lie group.
- $k \in \mathbb{N}$, the *level*.

Action functional:

$$S[A] = \frac{k}{4\pi} \int_{M^3} tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

Closed 3-manifold
Connection 1-form

Chern–Simons theory

$$S[A] = \frac{k}{4\pi} \int_{M^3} tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$

Variation of the action:

$$S[A + \varepsilon] = S[A] + \frac{k}{4\pi} \int_{M^3} tr(\varepsilon \wedge dA + A \wedge d\varepsilon + 2\varepsilon \wedge A \wedge A)$$

equal by
Stokes' theorem
$$= 2 \int_{M^3} tr(\varepsilon \wedge (dA + A \wedge A))$$

Classical solutions:

$$dA + A \land A = 0$$
 : flat connections.

Chern–Simons theory

$S[A] = \frac{k}{4\pi} \int_{M^3} tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$

Classical solutions on $\Sigma \times \mathbb{R}$

Partition function:

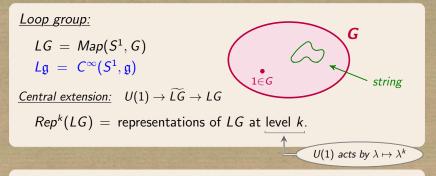
$$Z_{CS}(M) = \int_{\left\{ \begin{array}{c} G ext{-bundles with connection } A \\ modulo gauge ext{ transform.} \end{array}
ight\}} e^{iS[A]} \mathcal{D}A$$

Hilbert space:

 $\mathcal{H}_{CS}(\Sigma) =$ geom. quantiz. of moduli space of *flat* connections

symplectic manifold, $\omega(\alpha,\beta) = \frac{k}{4\pi} \int_{\Sigma} tr(\alpha \wedge \beta)$

Chern–Simons = Reshetikhin–Turaev for $Rep^k(LG)$



Central extension:

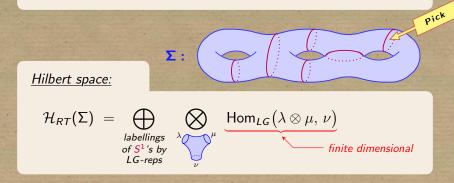
$$L\mathfrak{g}\oplus\mathbb{C}$$
 $\left[(f,a),(g,a')\right]_{L\mathfrak{g}\oplus\mathbb{C}}=\left([f,g]_{L\mathfrak{g}},rac{k}{2\pi i}\int_{S^1}\langle f,dg
angle
ight)$

Chern–Simons = Reshetikhin–Turaev for $Rep^k(LG)$

Partition function:

M: 3-manifold

 $Z_{RT}(M) = \ldots$



Rep^k(LG)

positive energy representations of the loop group at level k.

mathematically

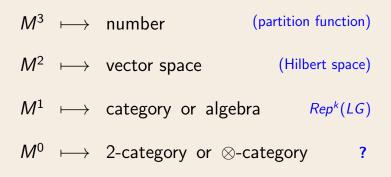
physically

$Rep^k(LG) = CS(S^1)$

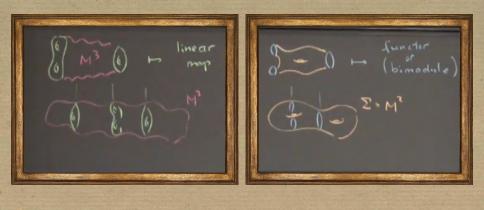
Charges of Wilson lines

What Chern–Simons theory assigns to a circle

Extended TQFT:



Cobordism hypothesis: a TQFT is *entirely determined* by what it assigns to a point

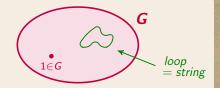


(8

Cobordism hypothesis: a TQFT is *entirely determined* by what it assigns to a point

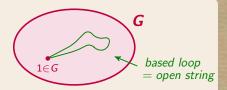
Loop group:

 $LG = Map(S^1, G)$ $Rep^k(LG) = CS(S^1)$



Based loop group:

 $\Omega G = \{ \gamma \in LG \mid \gamma(1) = 1 \}$ $Rep^{k}(\Omega G) = CS(pt)$



Proposal: $CS(pt) = Rep^k(\Omega G)$

If Z is a 3D extended TQFT and C := Z(pt), then: (C is a tensor category)

 $\begin{aligned} \mathcal{C} \text{ as a mere category, but} \\ \text{where one remembers the} \\ \text{left action of } \mathcal{C} \text{ on itself} \\ \text{and the right action of } \mathcal{C} \\ \text{on itself.} \end{aligned}$

 $\mathcal{Z}(S^1) \,=\, \mathcal{Z}(\overset{\bullet}{\overbrace{}}) \,=\, \mathcal{C} \,\underset{\mathcal{C}\otimes\mathcal{C}^{\mathrm{op}}}{\boxtimes} \,\mathcal{C} \,=:\, \mathbb{D}(\mathcal{C})$

Proposal:
$$CS(pt) = Rep^k(\Omega G)$$

If
$$\mathcal{Z}$$
 is an extended TQFT, then $\mathcal{Z}(S^1) = \mathbb{D}(\mathcal{Z}(pt))$

$$\begin{aligned} \mathcal{Z}(& \longleftrightarrow) &= {}_{c} \mathcal{C}_{c} \\ \mathcal{Z}(& \boxdot) &= {}_{c \otimes c^{\mathrm{op}}} \mathcal{C} \\ \mathcal{Z}(& \Huge{\leftarrow}) &= {}_{\mathcal{C} \otimes c^{\mathrm{op}}} \\ \mathcal{Z}(S^{1}) &= \mathcal{Z}(& \Huge{\leftarrow}) \\ \end{aligned} \right) = {}_{\mathcal{C} \otimes c^{\mathrm{op}}} \mathcal{C} =: \mathbb{D}(\mathcal{C}) \end{aligned}$$

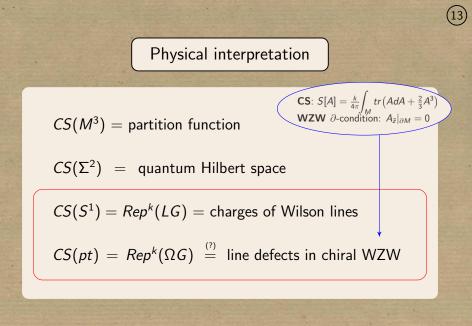
<u>Theorem (H. 2017)</u>: $\mathbb{D}(\operatorname{Rep}^{k}(\Omega G)) = \operatorname{Rep}^{k}(LG).$

If
$$\mathcal{Z}$$
 is an extended TQFT, then $\mathcal{Z}(S^1) = \mathbb{D}\big(\mathcal{Z}(\mathsf{pt})\big)$

- It is generally accepted that $CS(S^1) = Rep^k(LG)$.
- If we set $CS(pt) = Rep^k(\Omega G)$, we recover what we know: $CS(S^1) = \mathbb{D}(CS(pt)) = \mathbb{D}(Rep^k(\Omega G)) = Rep^k(LG).$

 \implies • We propose: $CS(pt) = Rep^k(\Omega G)$

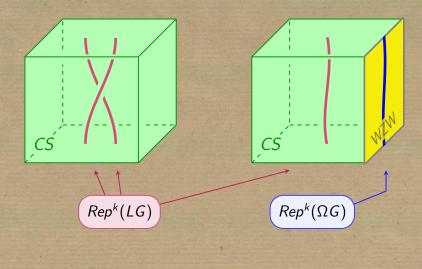
<u>Theorem (H. 2017)</u>: $\mathbb{D}(\operatorname{Rep}^k(\Omega G)) = \operatorname{Rep}^k(LG).$



Bulk lines (= Wilson lines)

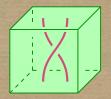
Boundary lines in chiral WZW

14

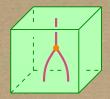


Structure of $Rep^k(LG)$ and of $Rep^k(\Omega G)$.

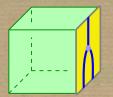
Braiding of bulk lines



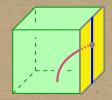
Fusion of bulk lines



Fusion of boundary lines



Fusion of bulk line with a bdry line



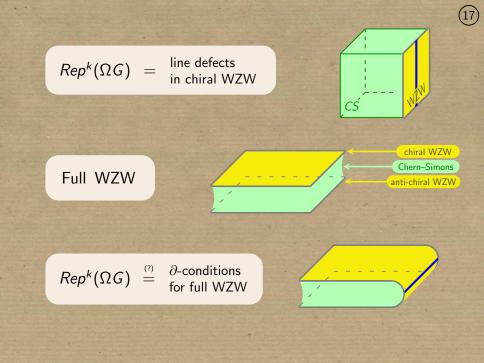
Structure of $Rep^k(LG)$ and of $Rep^k(\Omega G)$.

<u>Theorem (H. 2017):</u>

• The categories $Rep^k(LG)$ and $Rep^k(\Omega G)$ carry all the structures mentioned above (braiding, fusion, etc.).

• $Rep^{k}(LG)$ is the *maximal* category that carries that structure with $Rep^{k}(\Omega G)$.

 $\left(\Rightarrow Rep^k(LG) \text{ can be reconstructed from } Rep^k(\Omega G). \right)$



Question: Can one use the description via $\operatorname{Rep}^{k}(\Omega G)$ to classify line defects in chiral WZW?

Conjecture:

Line defects ^{1,2} in chiral WZW \longleftrightarrow $\left\{ \begin{array}{l} \bullet \text{ a fusion category } \mathcal{C} \\ \bullet \text{ an object } x \in \mathcal{C} \\ \bullet \text{ a central functor } Rep^k(LG) \to \mathcal{C} \end{array} \right.$

1 : only those defects whose fusion algebra closes after finitely many steps. 2 : only up to conjugation by invertible defects.

Summary

- Chern–Simons theory appears to fit in the formalism of extended quantum field theory.
- $CS(pt) = Rep^k(\Omega G) =$ line defects in chiral WZW.
- Prospects of classification results for line defects in chiral WZW = boundary conditions for full WZW.

Thank you!