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1 Generalised equivariant elliptic cohomology

Elliptic cohomology is a familiy of cohomology theories. There is one ellip-
tic cohomology for every elliptic curve E, subject to a certain condition called
Landweber exactness. When working over rings of characteristic zero the Landwe-
ber exactness condition is trivially satisfied, and every elliptic curve E (over any
Q-algebra k) has an associated elliptic cohomology theory. We denote it E``∗E .
Its ring of coefficients is given by

E``∗E(pt) = k[ω±1] :=
⊕
n∈Z

ω⊗n,

where ω is the k-module of invariant differentials on E.
Given a bicommutant category T , we have reasons to believe that there exists

such a thing as T -equivariant elliptic cohomology. In this article, we construct
such a theory when the ring of definition of the elliptic curve has characteristic
zero and when the bicommutant category satisfies a certain finiteness condition.
The corresponding theory is denoted E``∗E,T . Even though we call this an
‘equivariant’ cohomology theory, it is a just a cohomology theory in the usual
sense: the spaces on which this cohomology theory is defined are not equipped
with any kind of action.

We will not enter into the details of the finiteness assumptions that T should
satisfy. All that we’ll need is the assumption that the Drinfel’d center of T is
a modular tensor category. The T -equivariant elliptic cohomology E``E,T is a
module over the non-equivariant elliptic cohomology E``∗E , and satisfies

E``∗E,T (X) = E``∗E,T (pt)⊗Q H
∗(X,Q) and

E``∗E,T (pt) = E``0E,T (pt)⊗E``0E(pt) E``∗E(pt) = E``0E,T (pt)[ω±1]

By the above formulae, in order to define the cohomology theory E``∗E,T , it is

enough to describe the k-module E``0E,T (pt). We will define the latter so as to
only depends on the elliptic curve E and the modular tensor category Z(T ).
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2 Reshetikhin-Turaev state spaces for elliptic curves
over rings

Another way of describing the goal of this paper is that it produces a general-
ization of Reshetikhin-Turaev state spaces.

Given a modular tensor category C over C and a compact oriented surface
Σ, the Reshetikhin-Turaev construction associates to the above data a complex
vector space RTC(Σ). We generalize this to a setup where the surface Σ is
replaced by an elliptic curve E over some ring k of characteristic zero. When
k = C, our construction recovers the usual Reshetikhin-Turaev state space. This
new Reshetikhin-Turaev state space RTC(E) is a k-module, it is one and the
same thing as the generalized equivariant elliptic cohomology discussed in the
previous section:

RTZ(T )(E) = E``0E,T (pt).

Overall goal: Given a modular tensor category C over the complex numbers,
and an elliptic curve E over a ring k of characteristic zero, we want to construct
a k-module

RTC(E).

Construction: Let r be the rank of C (the number of simple objects). Let n
be an integer such that the representation SL(2,Z)→ GL(r,Qab) given by the
(normalised) modular S and T matrices factors as

SL(2,Z) //

����

GL(r,Qab)

SL(2,Z/nZ) // GL(r,Q[ζn]).
?�

OO

A � //

∈

M(A)

∈

Here, ζn is a primitive nth root of unity, and Qab =
⋃

n Q[ζn].
Let E[n] be the group scheme of n-torsion points of E. By étale descent,

it is enough to define RTC(E) when the étale map E[n] → Spec(k) is trivial
(isomorphic to Spec(k)× Z/nZ). If E[n] is not trivial, we let Spec(k)[n] be the
scheme whose S-points consist of a point x : S → Spec(k) and an isomorphism
(Z/nZ)2 ∼= E[n]x, where E[n]x is the set of lifts S → E[n] of x. We then define

RTC(E) := RTC

(
E ×Spec(k) Spec(k)[n]

)GL(2,Z/nZ)
.

We have therefore reduced the problem of defining RTC(E) to the special case
when E[n] → Spec(k) is a trivial bundle (this implies in particular that k has
enough nth roots of unity).

This is where the construction really starts:
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Pick a trivialisation ϕ : (Z/nZ)2
∼=−→ E[n], and define

RTC(E) := kr.

Given two trivialisations ϕ1, ϕ2 : (Z/nZ)2 → E[n], we need to provide an iso-
morphism

f12 : kr → kr.

Let

A12 := ϕ−12 ϕ1 and A12 :=
(
det(A12) 0

0 1

)−1
A12 ∈ SL(2,Z/nZ).

The map
det(ϕ1) : Z/nZ→ detE[n] ∼= µn

(where the isomorphism detE[n] ∼= µn comes from the Weil pairing) induces a
field homomorphism

α1 : Q[ζn]→ k.

We define
f12 := α1(M(A12)) ∈ GL(r, k).

For the above definition to be consistent, we need to verify that given three
isomorphisms ϕ1, ϕ2, ϕ3 : (Z/nZ)2 → E[n] the cocycle condition f23 ◦ f12 = f13
holds.

We have

f23 ◦ f12 = α2(M(A23))α1(M(A12))

= α2

(
M
( (

det(A23) 0
0 1

)−1
A23

))
α1

(
M
( (

det(A12) 0
0 1

)−1
A12

))
and

f13 = α1

(
M
( (

det(A13) 0
0 1

)−1 )
A13

)
∈ GL2(r, k).

Apply α−11 to both expressions:

α−11 (f23 ◦ f12) = α−11 α2

(
M
( (

det(A23) 0
0 1

)−1
A23

))
M
(
A12

)
α−11 (f13) = M

( (
det(A13) 0

0 1

)−1
A13

)
= M

( (
det(A12) 0

0 1

)−1 ( det(A23) 0
0 1

)−1
A23

(
det(A12) 0

0 1

)
A12

)
= M

( (
det(A12) 0

0 1

)−1
A23

(
det(A12) 0

0 1

) )
M
(
A12

)
.

So we are reduced to checking the following equation:

α−11 α2

(
M
(
A23

))
?
= M

( (
det(A12) 0

0 1

)−1
A23

(
det(A12) 0

0 1

) )
.

Recall that α−11 α2 = det(ϕ−11 ϕ2) : Z/nZ→ Z/nZ is multiplication by det(A12)−1.
The above equation follows from a general fact about modular S and T matrices:
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Lemma 1. If u ∈ (Z/nZ)× (i.e. u ∈ Z/nZ is coprime to n) and M is the
representation of SL(2,Z/nZ) coming from a modular category, then we have

σu
(
M(A)

)
= M

(
( u 0
0 1 )A ( u 0

0 1 )
−1
)
.

Here, σu ∈ Gal(Q[ζn]/Q) ∼= (Z/nZ)× denotes the Galois automorphism associ-
ated to u ∈ (Z/nZ)×.

Proof. Both sides are multiplicative inA, since σu(M(AB)) = σu(M(A))σu(M(B))
and

M
(

( u 0
0 1 )AB ( u 0

0 1 )
−1
)

= M
(

( u 0
0 1 )A ( u 0

0 1 )
−1

( u 0
0 1 )B ( u 0

0 1 )
−1
)

= M
(

( u 0
0 1 )A ( u 0

0 1 )
−1
)
M
(

( u 0
0 1 )B ( u 0

0 1 )
−1
)

(even though ( u 0
0 1 ) 6∈ SL(2,Z/nZ)).

So we only need to verify the identity on the generators s =
(
0 −1
1 0

)
and

t = ( 1 1
0 1 ) of SL(2,Z/nZ). We write S = M(s) and T = M(t). These then

reduce to a couple of known facts about modular data.
For A = s, we note that

( u 0
0 1 )

(
0 −1
1 0

)
( u 0
0 1 )

−1
=
(

0 −u
u−1 0

)
=
(
u 0
0 u−1

) (
0 −1
1 0

)
,

and that both of these matrices are in SL(2,Z/nZ). Let Gu := M
(
u 0
0 u−1

)
(the

matrices G` for ` ∈ (Z/nZ)× are the signed permutation matrices realizing the
action of the Galois group on the simple objects of the modular category). We
have

M
( (

u 0
0 u−1

) (
0 −1
1 0

) )
= GuS,

and as the Galois group actions on the simple objects and on the field are related
by the formula G`S = σ`(S) [1, Prop 2.2], we have the desired result.

For A = t, the computation is simpler:

( u 0
0 1 ) ( 1 1

0 1 ) ( u 0
0 1 )

−1
= ( 1 u

0 1 ) = tu,

so M(( u 0
0 1 ) t ( u 0

0 1 )
−1

) = Tu. Since T is diagonal with diagonal entries which
are n-th roots of unity, we also have σu(T ) = Tu.

Questions:
• If one takes T = V ec[G] for the finite group G = Z/mZ, in other words, if

one takes C = V ecG[G], then the resulting RT k-module should be OE[m].
• If one takes S = (1) and T = (ζ3), then the resulting RT k-module should

be ω⊗4 (recall that ω⊗12 is canonically trivial over MQ
1,1).

• Fix the elliptic curve E. Show that the construction T 7→ RTZ(T )(E)
extends to a functor. Given a bimodule category T1MT2 , there should be an
associated linear map RTZ(T1)(E)→ RTZ(T2)(E).
• Fix C. And look at E 7→ RTC(E): this is a rank r vector bundle over the

moduli stack of elliptic curvesMQ
1,1. One can try to compute its global sections.

That’s a module over the ring Q[g2, g3] of modular forms. What is that module?
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