# Rational generalised 2-equivariant elliptic cohomology 

A. Henriques and S. Morrisson

October 2016

## 1 Generalised equivariant elliptic cohomology

Elliptic cohomology is a familiy of cohomology theories. There is one elliptic cohomology for every elliptic curve $E$, subject to a certain condition called Landweber exactness. When working over rings of characteristic zero the Landweber exactness condition is trivially satisfied, and every elliptic curve $E$ (over any $\mathbb{Q}$-algebra $k$ ) has an associated elliptic cohomology theory. We denote it $\mathcal{E} \ell \ell_{E}^{*}$. Its ring of coefficients is given by

$$
\mathcal{E} \ell \ell_{E}^{*}(p t)=k\left[\omega^{ \pm 1}\right]:=\bigoplus_{n \in \mathbb{Z}} \omega^{\otimes n}
$$

where $\omega$ is the $k$-module of invariant differentials on $E$.
Given a bicommutant category $\mathcal{T}$, we have reasons to believe that there exists such a thing as $\mathcal{T}$-equivariant elliptic cohomology. In this article, we construct such a theory when the ring of definition of the elliptic curve has characteristic zero and when the bicommutant category satisfies a certain finiteness condition. The corresponding theory is denoted $\mathcal{E} \ell \ell_{E, \mathcal{T}}^{*}$. Even though we call this an 'equivariant' cohomology theory, it is a just a cohomology theory in the usual sense: the spaces on which this cohomology theory is defined are not equipped with any kind of action.

We will not enter into the details of the finiteness assumptions that $\mathcal{T}$ should satisfy. All that we'll need is the assumption that the Drinfel'd center of $\mathcal{T}$ is a modular tensor category. The $\mathcal{T}$-equivariant elliptic cohomology $\mathcal{E} \ell \ell_{E, \mathcal{T}}$ is a module over the non-equivariant elliptic cohomology $\mathcal{E} \ell \ell_{E}^{*}$, and satisfies

$$
\begin{gathered}
\mathcal{E} \ell \ell_{E, \mathcal{T}}^{*}(X)=\mathcal{E} \ell \ell_{E, \mathcal{T}}^{*}(p t) \otimes_{\mathbb{Q}} H^{*}(X, \mathbb{Q}) \quad \text { and } \\
\mathcal{E} \ell \ell_{E, \mathcal{T}}^{*}(p t)=\mathcal{E} \ell \ell_{E, \mathcal{T}}^{0}(p t) \otimes_{\mathcal{E} \ell \ell_{E}^{0}(p t)} \mathcal{E} \ell \ell_{E}^{*}(p t)=\mathcal{E} \ell \ell_{E, \mathcal{T}}^{0}(p t)\left[\omega^{ \pm 1}\right]
\end{gathered}
$$

By the above formulae, in order to define the cohomology theory $\mathcal{E} \ell \ell_{E, \mathcal{T}}^{*}$, it is enough to describe the $k$-module $\mathcal{E} \ell \ell_{E, \mathcal{T}}^{0}(p t)$. We will define the latter so as to only depends on the elliptic curve $E$ and the modular tensor category $Z(\mathcal{T})$.

## 2 Reshetikhin-Turaev state spaces for elliptic curves over rings

Another way of describing the goal of this paper is that it produces a generalization of Reshetikhin-Turaev state spaces.

Given a modular tensor category $\mathcal{C}$ over $\mathbb{C}$ and a compact oriented surface $\Sigma$, the Reshetikhin-Turaev construction associates to the above data a complex vector space $R T_{\mathcal{C}}(\Sigma)$. We generalize this to a setup where the surface $\Sigma$ is replaced by an elliptic curve $E$ over some ring $k$ of characteristic zero. When $k=\mathbb{C}$, our construction recovers the usual Reshetikhin-Turaev state space. This new Reshetikhin-Turaev state space $R T_{\mathcal{C}}(E)$ is a $k$-module, it is one and the same thing as the generalized equivariant elliptic cohomology discussed in the previous section:

$$
R T_{Z(\mathcal{T})}(E)=\mathcal{E} \ell \ell_{E, \mathcal{T}}^{0}(p t)
$$

Overall goal: Given a modular tensor category $\mathcal{C}$ over the complex numbers, and an elliptic curve $E$ over a ring $k$ of characteristic zero, we want to construct a $k$-module

$$
R T_{\mathcal{C}}(E)
$$

Construction: Let $r$ be the rank of $\mathcal{C}$ (the number of simple objects). Let $n$ be an integer such that the representation $S L(2, \mathbb{Z}) \rightarrow G L\left(r, \mathbb{Q}_{a b}\right)$ given by the (normalised) modular $S$ and $T$ matrices factors as


Here, $\zeta_{n}$ is a primitive $n$th root of unity, and $\mathbb{Q}_{a b}=\bigcup_{n} \mathbb{Q}\left[\zeta_{n}\right]$.
Let $E[n]$ be the group scheme of $n$-torsion points of $E$. By étale descent, it is enough to define $R T_{\mathcal{C}}(E)$ when the étale map $E[n] \rightarrow \operatorname{Spec}(k)$ is trivial (isomorphic to $\operatorname{Spec}(k) \times \mathbb{Z} / n \mathbb{Z})$. If $E[n]$ is not trivial, we let $\operatorname{Spec}(k)^{[n]}$ be the scheme whose $S$-points consist of a point $x: S \rightarrow \operatorname{Spec}(k)$ and an isomorphism $(\mathbb{Z} / n \mathbb{Z})^{2} \cong E[n]_{x}$, where $E[n]_{x}$ is the set of lifts $S \rightarrow E[n]$ of $x$. We then define

$$
R T_{\mathcal{C}}(E):=R T_{\mathcal{C}}\left(E \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k)^{[n]}\right)^{G L(2, \mathbb{Z} / n \mathbb{Z})}
$$

We have therefore reduced the problem of defining $R T_{\mathcal{C}}(E)$ to the special case when $E[n] \rightarrow \operatorname{Spec}(k)$ is a trivial bundle (this implies in particular that $k$ has enough $n$th roots of unity).
This is where the construction really starts:

Pick a trivialisation $\varphi:(\mathbb{Z} / n \mathbb{Z})^{2} \xrightarrow{\cong} E[n]$, and define

$$
R T_{\mathcal{C}}(E):=k^{r}
$$

Given two trivialisations $\varphi_{1}, \varphi_{2}:(\mathbb{Z} / n \mathbb{Z})^{2} \rightarrow E[n]$, we need to provide an isomorphism

$$
f_{12}: k^{r} \rightarrow k^{r}
$$

Let

$$
A_{12}:=\varphi_{2}^{-1} \varphi_{1} \quad \text { and } \quad \bar{A}_{12}:=\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} A_{12} \in S L(2, \mathbb{Z} / n \mathbb{Z}) .
$$

The map

$$
\operatorname{det}\left(\varphi_{1}\right): \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{det} E[n] \cong \mu_{n}
$$

(where the isomorphism $\operatorname{det} E[n] \cong \mu_{n}$ comes from the Weil pairing) induces a field homomorphism

$$
\alpha_{1}: \mathbb{Q}\left[\zeta_{n}\right] \rightarrow k
$$

We define

$$
f_{12}:=\alpha_{1}\left(M\left(\bar{A}_{12}\right)\right) \in G L(r, k)
$$

For the above definition to be consistent, we need to verify that given three isomorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}:(\mathbb{Z} / n \mathbb{Z})^{2} \rightarrow E[n]$ the cocycle condition $f_{23} \circ f_{12}=f_{13}$ holds.

We have

$$
\begin{aligned}
f_{23} \circ f_{12} & =\alpha_{2}\left(M\left(\bar{A}_{23}\right)\right) \alpha_{1}\left(M\left(\bar{A}_{12}\right)\right) \\
& =\alpha_{2}\left(M\left(\left(\begin{array}{rl}
\operatorname{det}\left(A_{23}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} A_{23}\right)\right) \alpha_{1}\left(M\left(\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} A_{12}\right)\right)
\end{aligned}
$$

and

$$
f_{13}=\alpha_{1}\left(M\left(\left(\begin{array}{cc}
\operatorname{det}\left(A_{13}\right. & 0 \\
0 & 1
\end{array}\right)^{-1}\right) A_{13}\right) \in G L_{2}(r, k) .
$$

Apply $\alpha_{1}^{-1}$ to both expressions:

$$
\begin{aligned}
\alpha_{1}^{-1}\left(f_{23} \circ f_{12}\right) & =\alpha_{1}^{-1} \alpha_{2}\left(M\left(\begin{array}{cc}
\left.\left.\left(\begin{array}{cc}
\operatorname{det}\left(A_{23}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} A_{23}\right)\right) M\left(\bar{A}_{12}\right) \\
\alpha_{1}^{-1}\left(f_{13}\right) & =M\left(\left(\begin{array}{cc}
\operatorname{det}\left(A_{13}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} A_{13}\right) \\
& =M\left(\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
\operatorname{det}\left(A_{23}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} A_{23}\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right) \bar{A}_{12}\right) \\
& =M\left(\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} \bar{A}_{23}\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)\right) M\left(\bar{A}_{12}\right) .
\end{array} .=\begin{array}{l}
1
\end{array}\right) .\right.
\end{aligned}
$$

So we are reduced to checking the following equation:

$$
\alpha_{1}^{-1} \alpha_{2}\left(M\left(\bar{A}_{23}\right)\right) \stackrel{?}{=} M\left(\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)^{-1} \bar{A}_{23}\left(\begin{array}{cc}
\operatorname{det}\left(A_{12}\right) & 0 \\
0 & 1
\end{array}\right)\right) .
$$

Recall that $\alpha_{1}^{-1} \alpha_{2}=\operatorname{det}\left(\varphi_{1}^{-1} \varphi_{2}\right): \mathbb{Z} / n \mathbb{Z} \rightarrow Z / n \mathbb{Z}$ is multiplication by $\operatorname{det}\left(A_{12}\right)^{-1}$. The above equation follows from a general fact about modular $S$ and $T$ matrices:

Lemma 1. If $u \in(\mathbb{Z} / n \mathbb{Z})^{\times}$(i.e. $u \in \mathbb{Z} / n \mathbb{Z}$ is coprime to $n$ ) and $M$ is the representation of $S L(2, \mathbb{Z} / n \mathbb{Z})$ coming from a modular category, then we have

$$
\sigma_{u}(M(A))=M\left(\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right) A\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right)^{-1}\right) .
$$

Here, $\sigma_{u} \in \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$denotes the Galois automorphism associated to $u \in(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Proof. Both sides are multiplicative in $A$, since $\sigma_{u}(M(A B))=\sigma_{u}(M(A)) \sigma_{u}(M(B))$ and

$$
\begin{aligned}
M\left(\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right) A B\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)^{-1}\right) & =M\left(\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right) A\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right) B\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)^{-1}\right) \\
& =M\left(\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right) A\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)^{-1}\right) M\left(\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right) B\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right)^{-1}\right)
\end{aligned}
$$

(even though $\left(\begin{array}{cc}u & 0 \\ 0 & 1\end{array}\right) \notin S L(2, \mathbb{Z} / n \mathbb{Z})$ ).
So we only need to verify the identity on the generators $s=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $t=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ of $S L(2, \mathbb{Z} / n \mathbb{Z})$. We write $S=M(s)$ and $T=M(t)$. These then reduce to a couple of known facts about modular data.

For $A=s$, we note that

$$
\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
0 & -u \\
u^{-1} & 0
\end{array}\right)=\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),
$$

and that both of these matrices are in $S L(2, \mathbb{Z} / n \mathbb{Z})$. Let $G_{u}:=M\left(\begin{array}{cc}u & 0 \\ 0 & u^{-1}\end{array}\right)$ (the matrices $G_{\ell}$ for $\ell \in(\mathbb{Z} / n \mathbb{Z})^{\times}$are the signed permutation matrices realizing the action of the Galois group on the simple objects of the modular category). We have

$$
M\left(\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)=G_{u} S
$$

and as the Galois group actions on the simple objects and on the field are related by the formula $G_{\ell} S=\sigma_{\ell}(S)$ [1, Prop 2.2], we have the desired result.

For $A=t$, the computation is simpler:

$$
\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)=t^{u},
$$

so $M\left(\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right) t\left(\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right)^{-1}\right)=T^{u}$. Since $T$ is diagonal with diagonal entries which are $n$-th roots of unity, we also have $\sigma_{u}(T)=T^{u}$.

## Questions:

- If one takes $\mathcal{T}=V e c[G]$ for the finite group $G=\mathbb{Z} / m \mathbb{Z}$, in other words, if one takes $\mathbb{C}=V e c_{G}[G]$, then the resulting RT $k$-module should be $\mathcal{O}_{E[m]}$.
- If one takes $S=(1)$ and $T=\left(\zeta_{3}\right)$, then the resulting RT $k$-module should be $\omega^{\otimes 4}$ (recall that $\omega^{\otimes 12}$ is canonically trivial over $\mathcal{M}_{1,1}^{\mathbb{Q}}$ ).
- Fix the elliptic curve $E$. Show that the construction $\mathcal{T} \mapsto R T_{Z(\mathcal{T})}(E)$ extends to a functor. Given a bimodule category $\mathcal{T}_{1} \mathcal{M}_{\mathcal{T}_{2}}$, there should be an associated linear map $R T_{Z\left(\mathcal{T}_{1}\right)}(E) \rightarrow R T_{Z\left(\mathcal{T}_{2}\right)}(E)$.
- Fix $\mathcal{C}$. And look at $E \mapsto R T_{\mathcal{C}}(E)$ : this is a rank $r$ vector bundle over the moduli stack of elliptic curves $\mathcal{M}_{1,1}^{\mathbb{Q}}$. One can try to compute its global sections. That's a module over the ring $\mathbb{Q}\left[g_{2}, g_{3}\right]$ of modular forms. What is that module?


## References.

[1] Terry Gannon and Scott Morrison, Modular data for the extended Haagerup subfactor, ArXiv: 1606.07165 (2016).

