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LUGLOUUCLION

In this dissertation. we are concerned with a class of continuous projective unitary rep-
reseniations of the group of czmummmou.vwmmm?.mbm dificomorphisms of the circle Diff-§.
and with the associated strucrures. These representazions sailsiy a certain positive en-
€rgy condition, which requires that the set of eigenvalues of the infinitesimal generator of
the rotation subgroup be bounded below, and that the cosresponding eigenspaces be finjte-
dimensional. Positive energy represenzations of Difi"8?. ¢ well as of loop groups LG. are of
intrinsic interest by virtue of the fact that 1o systemalic theory of representations exists for
infinite-dimensional Lie groups. but are in fact much riche- in content bacause of their close
associations with conformal field theory. j.e. conformally-invariant quantum field theory in
two dimensions. They occur by “integrating” the unitary highest weight representations of

ceriain infinite dimensional Lie algebras. viz. the Virasoro zleebrs

?ﬁ,hLN?ﬂ!iN\3+a+ ?.zu.,«ﬁ;s.l:

and affine Kac-Moody algebras in the case of loop groups. Positive energy representations
of Diff*5? are completelv reducible and the irreducible ones are characterised by a pair of
non-negative numbers. i.e. the highest weight (A, ¢). where ¢ is the central charge of the
corresponding Virasoro algebra. and 4 is the smallest eigenvalue of the diagonal operator
Lo. We shall only be concerned with the discrete series Tepresentations; these are preciselv
those with central charge 0 < ¢ < 1.in fact ¢ = ] - E/mim+1),m= 3.4,... and ﬁ‘m
distinguished by the fact that. at a fixed central charge c. only a finite number of distinct
irreducible representations exist. Our dissertation studies the construction of the quantum
field theory associated to the discrete series representations at a fixed central charge ¢, and

the algebraic structure of the corresponding category of positive energy representations.

The theory of von Neumann algebras — von Neumann’s rings of operators — was
invented in part to provide a framework to study quantum mechanics and group repre-
sentation theory. Since the foundational work of Maurray and von Neumann, the impetus
has come from the modular theory of Tomita and Takesaki, the Connes theory of injective

factors and, most recently, the subfactor theory of Jones. .

It is well-known that von Newmann subfactors can be defined using the Yang-Baxter

braiding in certain critical lattice models. The continuum limit of such a model is believed

PRSI
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to be described by a conformal field theory, with the Yang-Baxter braiding preserved in the
braiding relations of primary fields in the chiral components of the corresponding conformal
field theory; and this has been verified by Tsuchiva and Kanie for a class of models corre-
sponding to the conformal field theories associated to the positive energy represeniations
of the loop group LG with G = SU(N). Following from this, Jones and Wassermann have
constructed vor Neumann subfactors directly from positive energy representations of loop
groups. In our dissertation, we develop the corresponding theory for the discrete series

representations of Diff *571.

Originating in attempts to reconcile quantum mechanics with special relativity, quan-
tum field theory has developed in several different ways. Specific models have been exten-
sively studied using path integrai techniques and other deep but mathematically ambiguous
ideas. At the same time, attempts at a rigorous consiructive quantum field theory have
had only limited success. In a different vein, aziomatic and algebraic quantum field theory
study the consequences of a set of axioms — the Wightman and Haag-Kastler axioms re-
spectively — hypothesising the properties of a quantum ficld theory. Although not without
@w successes. they suffer from a scarcity of specific models that can be shown to satis{y the
axioms. Since few results are model-independent, ther have largely remained as languages
and frameworks withoul being actual theories. Historically, the most imporiant models of
quantum field theory are defined on Minkowski space-time R21! or Euclidean space R9,
particularly with d = 4, the dimension of physical space-time. Some of the difficulties in a
constructive approach to quantum field theory are alleviated by special plenomena in lower
dimensions, and by the simplifying features of particular models that only exist in lower
dimensions. At the same time, Fuclidean space can be replaced by an arbitrary Riemannian
manifold. This leads to the study of “toy models” of quantum fleld theory that illustrate
the general principles but side-step the problems. Some of these theories are interesting in
their own right, and may model, say, lower-dimensional systems that occur in solid-state
physics. Conformal field theories in particular occur as models of two dimensional statistical

systems at criticality, and in the string theories of high energy physics.

In the 1980s, 2 large class of models of conformal field theory were discovered by
Belavin, Polyakov and Zamolodchikov, and by Knizhnik and Zamolodchikov, that are closely
related to the representation theory of the Virasoro and affine Kac-Moody algebras. Roughly
speaking, these models have a factorisation property into left /right chiral components: the
“physical space” decomposes as a finite sum of tensor products of unitary highest weight

representations H = @; Vi@ W, and there is an analogous decomposition for the “quantum
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fields™. The work of Jones and Wassermann. and that in our disserta. . is concerned with
quantum field theories associated to positive energy representations, and therefore with the
chiral compenents of these conformal field theories (but they are theories in their own right).
The transition from what is the purely algebraic representation theory of the Virasoro or
affine Kac-Moody algebras to continuous group representations of Diff*S? and loop groups
LG on Hilbert mmwn,m.m introduces the ideas and techniques of operator aigebras to the study

of conformal field theory.

The construction of subfactors fits neatly into the framework of algebraic quantum
field theory. especially as developed by Doplicher, Haag and Roberts. but with the circle
and MbBbius group in place of Minkowski space g,m the Poincaré group, and the braid
group in place of the symmetric group. This is to sav that mathematical structures can
be constructed from positive energy representations of loop groups and the discrete series
represeniations of Diff*§ 1 which satisfy the basic postulates, and constitute concrete mod-
els. of Doplicher-Haag-Roberts theory, albeit in the modified context. The appearance of
the braid group is accompanied by new phenomena and refiects a deeper connection to the
theory of quantum invariants of knots. Proving the basic postulates as theorems involves
a range of techniques from conformal field theory, especially the hierarchy of conformal
inclusions that realises one conformal field theory as a subtheory of another. In particular.
,.cm make essential use of the Goddard-Eent-Olive coset construction of the discrete series
nmnwﬂmmmugaowm. and a substantial part of our dissertation s devoted to an analogous con-
struction of the primary fields of the theory. The hierarchical structure is fundamental to
:,K methods developed by Wassermann. which uses a result of Takesaki that relates the

modular theory of a von Neumann algebra to that of a subalgebra which is preserved by

the modular automorphism group.

The primary fields that we construct are the “quantum fields” of the theory, i.e. they are
certain operator-valued distributions. The latter are the basic objects of axiomatic quantum
field theory and, in fact, these theories also satisfy the Wightman axioms. Primary fields are
characterised in group-theoretic terms and have been classified {in the case of the discrete
series representations) by Feigin and Fuchs; our work provides an alternative construction.
The unitary highest weight representations of the Virasoro and afine Kac-Moody algebras
can be realised in two complementary ways: as the quotient of a Verma module by its
maximal submodule — the method of Feigin and Fuchs — and using conformal inclusions.
An analogous statement holds for the no~ammvmu&bm primary fields. This dual approach

is also found in the representation theory of the compact Lie groups, where Borel-Weil
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theory provides a uniform construction that works for all representations. and Weyl theory
constructs all the representations from 2 handful of “simpler” ones by the decomposition of

tensor products of the latter,

A substantial part of the study of low-dimensional topology is devoted to the con-
struction of invariants of knots and 3-manifolds. using the techniques of Chern-Simons field
theory, conformal field theory and quantum groups. In the latter approach. a basic notion
is that of a modular category. This is a monoidal category that is further endowed with a
braiding, a twist — generalising the notion of commutativizy of the usual tensor producr
— and a compatible duality. In addition, it has the properiy of finite decompositions; for
us, this means that the category is semisimple with a finite number of simple objects. and
semisimple objects mmn,ogwo% as a finite sum of simple ones. The prime examples of niod-
ular categorias come from the representation theory of quantum groups — a class of Hopf
algebras — with the deformazion parameter ¢ equal to a root of unity. However. Wasser-
mann has defined a tensor product operation on the abelian category of positive energy
representations of loop groups at a fixed level {and. with our results, also of discrete series
representations of Diff*S? at a fixed central charge). More precisely. the positive energy
representations have to be regarded as (M, Mr)-bimodules, where M is the von Neumann
algebra generated by a ocal loop group 1;G (or local diffeomorphism group Diff;5). This
operation of Connes fusion originates in Connes’ theory of bimodules and fusion. where. ex.
ploiting a correspondence between { 4. B)-bimodules and homomorphisms B — A. a tensor
product operation is defined on bimodules (A, B are vos Neumann algebras). This asso-
ciates to an (4, B)-bimedule H; and a (B, C)-bimodule Hy, an (4. C)-bimodule H B H,.
When M is a Type III factor, we show that the category of { M, M )-bimodules is a '~
monoidal category. When M = M, the irreducible positive energy representations are the
simple objects of a semisimple monoidal subcategory. In fact, this is a modular category,
Part of our dissertation is concerned with the details of this construction for the discrete

series representations.

In Chapter I we introduce positive energy representations of the group of orientation-
preserving diffeomorphisms of the circle and obtain their basic analytic properties. These are
a class of continuous projective unitary representations that satisfy a certain positive energy
condition, introduced by Segal; and have been constructed by Goodman and Wallach by
integrating unitary highest weight representations of the Virasoro algebra. We show that the
irreducible positive energy representations always arise in this manner. Their classification

— uniqueness and existence — is therefore determined by the corresponding Lie algebraic
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classification due to Friedan. Qiv and Shenker; and Goddard, Kent and Olive.

In Chapter II we introduce the primary fields of Belavin. Polvakov and Zamolodchikov
associated to the discrete series representations of the Virasoro algebra. and briefiy sketch
their classification in the Vermz module approach of Feigin and Fuchs. The basic concepts of
nowﬁuaﬂ field theory — state-fieid correspondence. correlation functions. braiding proper-

ties, operator product expansions — are developed. We compute some braiding coefficients.

In Chapter III we give a new construction and exisrence proof of the primary fields asso-
gl T T T omeMTL
ciated to the discrate series representations by explojting the coset construction of Goddard.

Kent and Olive. This cax be regarded. especially in view of the state-fiald correspondence.
as the natural counterpart of the result for representations. The construction makes mani-
fest certain properties of primary fields that are hard to establish, even mysterious. in the

Verma module approach.

In Chapter IV we apply the construction of discrete serjes primary fields i Chapter 111

to establish Sobolev inequalities for these operators. These inequalities extend a primary

field o : mu.:.: & ;\w: — mu}a to a jointly continuous linear map HEQ Vi, — Hy
The smezred primary field () is a densely-defined. closeable operator. At least when @

has conformal dimension h; o or b .. it has bounded closure and satisfies a stronger [*-

ineguality. We describe the construction of localised fields by smearing with bump functions,

and obiain the braiding relations they satisfy when they have disjoint support.

In Chapter V we give a brief exposition of some results of Wassermann's on the von
Neumann algebras generated by local diffeomorphism groups acting on the discrete series
representations. Together with other results. they imply the construction of quantum field
theories satisfving the axioms of Doplicher-Haag-Roberts theory. The method is by descent
from tensor products of the LSU(2) theories to the discrete series theories, which are realised
as sub-theories by the GKO construction. A key too! is the Tomita-Takesaki-Connes theory

of modular operators and Takesaki devissage.

In Chapter VI we introduce Connes fusion of bimodules over & Type 11 factor M.
The category Bimody of (M, M)-bimodules is a C* monoidal category. A discrete series
representation Hj . can be regarded as an (M1, M;)-bimodule, where M, = wo(Diff;$1)".
With M = M, the discrete series representations at a fixed central charge are the simple
objects of a semi-simple subcategory Pos,. of Bimod,,, closed under the tensor product
operation. The subcategory Pos, has considerable more structure; in fact, it is a modular

category. A key ingredient is the construction, from localised fields, of bounded intertwiners

lntroduciion 6

that satisfy braiding relations, following a general prescription due to Wassermann. We

. . . . . . .
also compute the representation ring associated to Connes fusion of the discrete series

representations.



Chapter 1
Positive energy representations of the
diffeomorphism group of the circle

We introduce positive energy representations of the group of orientation-preserving diffeo-
morphisme of the circle. which form the basic objects of study in this dissertation. These
zre a class of continuous prejective unitary representations that satisfy a cersain positive
energy condition. introduced by Segal! [Segl: and have been constructed by Goodman and
Wallach {GW] by integrating unitary highest weight representations of the Virasoro zlgebra.
We show that the irreducible positive energy representations always arise in this manner.
Their classification ~ unigueness and existence — is determined by the corresponding Lie
algebraic classification due to Friedan, Qiu and Shenker [FQS) and Goddard. Kent and
Oiive [GKO].

1. Positive energy representations of Diff*5!?

1.1. Diffeomorphisms and vector fields. The group of diffeomorphisms of the circle
Diff §? is topologised as an open subset of C*>(5?, §1), the smooth maps from the circle to
iuself, endowed with the C* topology. Taking S* = T C C, the complex numbers of unit
modulus, this is in turn regarded as a closed subspace of C(5%, R?). With this topology,
Diff 51 is a separable, metrisable topological group. The smooth vector fields on the circle
Vect5! is identified with C**(51, R). also with the C™ topology. Diff S* has the structure
of a regular, infinite-dimensional Lie group modelled on the Fréchet space Vect§!. It has
two connected pieces and the identity component is the group of orientation-preserving

difeomorphisms Difi*5?. The fundamental group of Difi *5? is the integers Z; its universal

covering group Diff '57 can be identified with the subgroup of diffeomorphisms ¢ : K — R
of the real line satisfying ¢(z + 2r) = ¢(z) + 27; and Diff*5? s,.mz_ the quotient by the
equivalence relation ¢ ~ ¢ + 2x. (For details, see [Ham], [Mi], [P5).) We also note the
result of Epstein, Herman and Thurston that Diff *$? is a simple group; this implies that
the image of the exponential map, which is not a local isomorphism, generates the whole

group (for the references, see [Mi]).

P
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Diff*5? contains the Mobius subgroup
Mob = {T — T,z o, la|> = B = 1}, (1.1.1)

which is therefore just the semi-simple Lie group PSU(1,1) (this is conjugate to PSL{2.R)
b 8

in PSL(2,0)). Its Lie algebra is spanned by the vector fields z = sin 857, y = cos 05 and

h = %.. with commutators
fhoel=y. [hyl=—z, [z.y]=-h {1.1.2)

In particular, Mob contains RotS?, the subgroup of rotations of the circle. We have
71 (Mob) = 71 {Rot5?} = Z;let Mob be the universal covering group of Mob. More generally.

for each integer n > 1, the vector fields

L o.1d 18 18 .
nlmgumﬁwﬁl M\InOm:mew‘ »tww@; {1.1.3)

span an isomorphic Lie algebra. By regarding them as vector fields on %\WMN instead of
R/2rxZ, we can see that they generate a subgroup Mob,, € Diff *$? that is isomorphic to an

n-fold no«mldm of Mob; in particular, Mob,, is semi-simple.

1.2. Definition. A continuous unitary representation v : T — U{H) of the circle on a
Hilbert spuce H is positive energy if the set of eigenvalues of the infintiesimal generator is
bounded below, and the corresponding eigenspaces are finite dimensional. A positive energy
representation of DHf*S? is a continuous projective unitary represeniation x : Diff 51 —

PU(H) that is positive energy as a representation of Rot5*, the subgroup of rotations.

We note the following. The group of unitary operators I/{H ) on a separable Hilbert
space H, endowed with the strong (equivalently, weak) operator topology, is a separable,
metrisable topological group. Its center, the scalars of unit modulus T, is a closed normal
subgroup, and the projective unitary group PU(H) is the quotient U{H)/T.

Since Mob,, is a semisimple Lie group, 7|mob, @ Mob, — PU(H) admits a lifting to
a continuous homomorphism ¢y, : Mob, — U(H) [Ba2]. In particular, n]pas Lifts to a
continuous homomorphism B — U{H); by Store’s theorem, this is given by ¢ +— ¢'*bo_ with

Ly self-adjoint, We necessarily have e?™2e = 23 for some h € R {modulo the integers),

since the left-hand-side is mapped to the identity element by the covering homomorphism p :
U(H)— PU{(H). Then e* ~ ettlo—h) is a continuous homomorphism from T into U(H),

whence Ly — h is diagonal with integral eigenvalues; the positive energy condition requires
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that the spectrum of eigenvalues of Ly be bounded below, and ..at the corresponding
eigenspaces be finite-dimensional.

We note that a closed invariant subspace of a positive energy representation H is also
2 positive energy representatiorn. as Is its orthogonal complement. By finite-dimensionality
of the Lg-eigenspaces. H is completely reducible to a {possibly infinite) direct sum of izre-

ducible pieces.

1.3. Action of ,26 sl(2,R) subalgebras. ILet X, Y and —iLy be the infinitesimal

generators of the one-parameter subgroups of Mob, corresponding respectively to the vector
fields sin mmmw‘ cos mwm and wﬂ On C®(o1). the dense subspace of smooth vectors for oy

{see. for exzmple. {Kn]). we have
[=ilp. X]=Y, [-iLle,Y¥]=-X, [X.Y]=iL,. (1.3.1)

(*(0;) conzains the Girding subspace for #; and is therefore 2 common core for the in-
finitesimal generators of Mob (Theorem 3.1 of [Se]). With Ly thus fixed, we also take & to
be the smaliest eigenvalue of Ly. Now H i also completely reducible as a unitary repre-
sentation of Mob to a direct sum of irreducibles. The irreducible unitary representations
of the universal covering group of SL{2.R) have been classified by Pukdnszky [Pu). Since
the Lg-spectrum is bounded below, the only irreducible representations of Mob that can
occur are the trivial one; and the D} (/ > 0) representations. which have Lo-spectrum
{l+j:35=0.1.2,...}. It follows that & > 0.

i

More generally, let w.w.:. wm.a and lm@o..rnzf ¢q € R, be the infinitesimal generators

of the one-parameter subgroups of Mob, corresponding to the Lie algebra elements (1.1.3).

On C°(o,). the smooth vectors for o, and a commeon core for the infinitesimal generators

of Mob,,,

[~iLo, Xn] = n¥n, [~iLo.Yal= =nXpn, [XnYa) = ni(Lo+ cn). (1.3.2)

Reasoning 2s before, we have h+ ¢, > 0. Let L, = i¥y, ~ X, and L_, = ¥, + X, on

C™{0y,); then [Lo, Lan) = Tnlyy and [L,, Loy) = 2n(Lo +¢,). We also define ¢g = 0, and

toy = ¢, for each n > 1.

1.4. Remark. We can pull back the circle extension p : QQNV — PU(H) by the con-
tinuous homomorphism 7 : Diff*§1 — PU(H) to obtain a topological circle extension of

Diff *S? by T given by

7 U(H) = Diff *5' x U(H ) |Graph(r) {1.4.1)

1. Positive energy representations of the d Teomorplism group 10

and a con.nutative diagram of continuous homomorphisms of sopological groups

= U{H) = U{H)
A-HAM« %ﬁ
Diff*5? = PU{H),

where 7°p. ¥ are the projections onto the first and second factors of 7 U H ). a closed
subgroup of Diff*S? x ["{H ). Since the bundle p: U{H) — PUIH) has continuous local
sections {Ba2]. the circle bundle 77p : #"U/(H) — Diff*§? i locally trivial. In fact. if
s U7 — p~U is a local section, we have the homeomorphism (x*p)= 15~ — %=1 x T
(9. v) ~— (9. us(7{g))™?). The collection of such charts makes T — 7 [(H) — Diff*S! a

topological circle extension.

1.5. Sobolev spaces, smooth and finite energy vectors. Let 4 be a positive self-
adjoint operator on a Hilbert space H. For s € B let H* be the completion of D{A4%). the

domain of 4°, with respect 1o the inner product {Eon)s = (14476 (1= A)m). Fors > 0.

H* = (14 A)""H. The spaces H°, ¢ € R. are the Sobolev spaces. or scale. associated to
A. (See [Ne2].) Let H™ = 1,50 H* be the corresponding Fréchet space of smooth vectors
for A. If 4 is diagonal. define H/i_ the subspace of finite energy vectors. as the algebraic

direct sum of the eigenspaces. H /" is dense in H* for eacl « £ R.aud in H.

I H = L*(5'), the square-integrable functions on the circle. and ¥ the infinitesimal

generator of rotations. then R is diagonal. its eigenvectors are the Fourier modes, and {&]
is positive diagonal. The finite energy vectors are trigonometric polynomials, the functions
with finite Fourier series. However, the ¢ topology on the smooth functions (SRt R
coincides with the Fréchet topology for the norms HAls =3 ifal i1+ In{)®, s > 0, where

the f,, are the Fourier modes of f (cf. above).

1.6. Lemma. The stbspace of finite energy vectors H7/" MRz C™(0,), end is lefi

invariant by the L, ‘s.

Proof. Given an integer m 2 1 and £ € H/'™ we are required to show that £ e C™(o,)

Let Z be an infinitesimal generator of Mob,. The limit operator

2y
£ M ¢ (1.6.1)

- 26 = iy

is defined on H/'" and leaves it invariant (see {Bal], p. 601; or [Pu]. p. 99-100). Tt follows
that B/ ¢ C%(q,) (see {Kn], Lemma 3.1.3). ‘ o
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1.7. Lemma. For& & B/ and m €I,

HLmlll < B+ ImPHI 4 Jopmy)

BT g g common core for ~iLlg. Am. Yo (M 2 1),
Froof. We use some arguments of Goodmen and Wallach [GW]. Fix an integer n > 1.
and let B be an irreducible sub-representation of g, : Mob, — ['(E). Then A/ is the

i -fin
. . . . } fin_ Jer
aigebraic direct sum of one-dimensional Lo-eigenspaces. On & le

9

QuﬁafiwlWELAL..H;LLNE. {g=R) {1.7.2)

be the Casimir operator. Let 7 € K be a unit vector in the lowest energv eigenspace. with
1. . 2 = M =

eigenvalue a. Then L,7 = 0.

DLl = {LnLosm. n) = 2r{a + ), (1.7.3)
" g = {Qn. 1) = Lo + el = FlIL-enll = FlILerl -
={a+¢tn)? = nlo+ca)
Hence for each integer N > 0.
WL 0lF 4 Lo L0l = {(LonDn + LaLon) Lm L)
= ({20Lo + ¢n)* ~ 2Q} LY 0, L2 0} 15

2

{2n(a + e MV + 1)+ (AP }HILE )]
<414 n)(1+ Jea 1LY ml

i

2
i

3 -fin
Since the Lg-eigenspaces are one-dimensional and mutually orthogonal, for all £ € A/,

HLenll < 200+ 2)H (L + JenD? €N (1.7.6)

Since the constants in the inequality (1.7.6) are independent of A, this establishes the

inequality (1.7.1). It follows from Nelson's commutator theorem {Nel] that .N?: is a core

. . o
for the operators X, = W.T.\I: —L,)and ¥, = .ww_d@: + L y).

1.8. Remark. More generally, if f is a vector field with finite Fourier series, define on

HFin the operator L(f) = ¥, fx La. From (1.7.6),

B Ells < Co(D 1l ls1 (1.8.1)

1. Positive energy representations of the diffeomorphism group 12

where Co(7) = 23, 1fal (1 + [aljisi+d(1 4 leyui)¥, for all £ € A7 and s € R. Then
Nelson's commutator theorem applies equally to L{f}. which is therefore essentially sell-
adjoint on H /™, When there is no confusion, we use the same symbo] for its self-adjoint
closure. It also follows from {1.8.1) that the operators L{f} extend to continuous linear

operators A1 — H* for each s € R. and hence also H® — [,

1.8. Sums and Lie products of vector fields. The following theorem of Nelson's {Nel}
is a key result that we shall need.

1.8.1. Theorem (Nelson). Let 6,(t). 8,{1) be one-parameter subgroups generated by
the vector fields f, g respectively. There is an € > 0 such that

n

Grag(t) = lim Qﬁwvﬁ} (1.8.1.1)

=00 n

in the C™ topology. and uniformly for |t] < ¢; and

o g(t) = lm &T(\Wvgxs/mv @yl (\Wv @y <\Wv (1.9.1.2)

T —

in the C°° topology. and uniformly for 0 < { < e.

FProof. This is a special case of Theorems 1 and 2 in Section 4 of [Nel}, which prove locally
uniform convergence when f, g are locally Lipschitz in the former and €2 in the latter, and
defined on an open set of a Banach space. For smooth vector fields on the circle, those

proofs are easily modified to show convergence in the ¢ topology. 0

1.10. Proposition. Let f be a vector field with finite Fourier sertes, and $7(1) the
one-parameter subgroup it generates. Then w(¢ (1)) = p(e't4(/)).

Proof. The Proposition is, by definition, true for f in the linear span of %m, sin :m% and
cos :m%m, for each integer n > 1. It therefore suffices to show that if the Proposition holds
for the vector fields f and g, then it also holds for the vector field J +g. We recall that
the homomorphisms 7 and p are continuous {see § 1.4). By the first assertion of Nelson's

theorem (Theorem 1.9.1),

I

(@ 744(1))

e 00

lim Timzis@%

It

lim T?.ﬁ:uimwzé ” (1.10.1)

n—00

. - n
lim 1?45(#5; ).

n 00

]
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Since H/™ is a core for L(f}. L{g) and L{f + g). on which L{f +g) = L{J)+ L(g). the
Trotter product formula (see {Nel]. Section 8, Theorem 6) applies and

lim th{,w:aw, = eftlis+o), (1.10.2)

The result follows by continuity of p. o
1.11. Theorem. On "

?;.iu§|=;a§+mw§w|3,;a..l {1.11.1)

Jor some ¢ € R.

FProof. Let f, g be vector fields with finite Fourier series. By the second part of Nelsou’s
theorem (Theorem 1.9.1} and the continuity of =.
o n
N 1 . ! , ! 1
wlop (1)) = lLm iomﬁlf\w :ieknz\ml:ie& /\wl:n,e,; /,\M: - {111.2)
By Proposition 1.10. this is

: : N : ( i ; T una"
pletLGNay = figy T?L,Aazgim»;\w:;ux VELH 5 «;Fi . (1113)

N —C
So there exists a sequence u,(!) € T such that

M = B (1) T-.,e\wss e~ VT LD (/T Lig) m{m:in

n-—oc

: . : : y
pt) lim |e"V/E MO SEUN e /T un

Tl

(1.11.4)

i

)

where we have passed to a convergent subsequence u, (1) — p(1). We cannot apply the
Lie product formula (see [Nel). Section 8, Theorem 7) to the right-hand-side since it is not
known that [L(f), L{g)] is essentially self-adjoint; instead, we expand each side in powers
of v/Z. We note that, if f is a vector field with finite Fourier series and £ € H/™ the map
t el is smooth since L(f) leaves H/*™ invariant. For £ € H/™, the left-hand-side
of (1.11.4) is .

€+ it L([f, g)) € + olt), (1.113)

and the right-hand-side

w1 {E+2[il(g), iL(fNE+ o(1) ). {1.11.6)

!
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Here. we note that the equality (1.11.4) guarantees convergence of its right-hand-side. By
moving (1) to the lefi-hand-side. and €/*4U7-9D 1o the right-hand-side. of {1.11.4). we see
that u(t) = 1 +¢p'(0)+ o{1). We deduce that

[iL(g). iL{])) = iL((f. g}) - (D) (1117

on B/, The Theorem foliows from the elementary classification [Seg] of 2-cocycles of the
Witt algebra [Lm.La] = (m — n) Luin. the complexification of the Lie algebra of vector

fields with finite Fourier series. o

1.12. Remark. Ir follows from the previous theorem that
= L3 :
2me, = SAB - m} (L.12.1)

for some ¢ € K, and for each integer m > 1. Since A + ¢, 2 0 for all m, we necessarily have

¢ 2 0. Substituting (1.12.1) in (1.8.1). we obtain
HLOO) &l < BN areg €l o (1.12.2)

for £ € H/™™ and f a vector field with finite Fourier serjes. By continuity, we can define
operators L{f} = 3. faLn on H/™, for arbitrary vector fields f. Just as before. by
Nelson's commutator theorem. L{f) is essentiallv self-adjoint and we use the same svmbol
for its closure when there is ro confusion. In particular. L{f) extends by continuity to a
linear map A — K. The linear map VectS1 @ H® — H™ & ¢ e —iL{f) € is jointly

continuous and defines a projective representation of Vect§! on 4.

1.13. Proposition. If ¢;(¢) is the one-parameter subgroup generated by a vector field f,
then m{ds(1)) = p(e™H)).

Proof. By Proposition 1.10, this holds for the dense subspace of vector fields with finite
Fourier series. So let f, — f be a convergent sequence of vector fields with finite Fourjer
series. For each 1 € R, the exponential map Vect5! — Diff*S?, g — b,(1}, is continuous
{even smooth; see {Mi}), so that ¢y, () — ¢,(t} in DI 5. By {1.12.1),

HLR) = LU EN < B Nifn~ fllg Il — 0 {(1.13.1)

for £ € H/'™ Since H¥" is a common core for L(f)and the L{f,}. we have L(f.) — L(f)
in the strong resolvent sense ({RS), Theorem VIIL.25). This is equivalent, by a theorem of
Trotter ([RS}, Theorem VIIL.21), to the statement that e*tLi/a) — ¢itL{7) i U(H). Hence

w(os(t) = lim m(d7, (1) = lim p(e™HIn)) = p(etiI)), (113.)

oy n—oco

which proves the result. O



—

1. Positive energy represeptations of the diffeomorphism group

1.14. Adjoint action of the difeomorphism group. o€ D1 ! and f € Ver: 51,

jet Ad{o)f denote the adjoint action of @ on f,

Ad(@)f = (¢71) 7 feomt, {1.14.1)

1.14.1. Claim. For o € Difi*5? and f € VectS!, we have the operator identity

il

#(6) L{(F17(6)" = I(Ad{o)]) + b(s. f) (1.34.1.1)

for some blo. f) € K. If o € Mob. then blo. f) =0, ie. the adjoini action of the Mabius
subgrovp 1s “anomaly-free”.
Proof. Since the image of the exponential map exp : Vect5! — Diff"5? generates Diff*5?.
it is sufficient to prove the first assertion for ¢ = @,{¢). the one-parameter subgroup gener-
ated by a vector field g. Then

meit m_.uE..:m..thJ = 7 (05(1) G (5) G 1))

(@ adie,(1)7(5)) (1.14.1.2)
(efLiA L, 1)).

]

=p

50 that
U LN = iLUO) o ) (g) ¢PoliAde (1) (1.14.1.3)
»‘ow, some A{¢) € T depending on fg and f. It is easy to see that & — A(s) is a continuous
rmEoEonvEmB R — T, so that AMs) = €209 for some c(tg, f} = te(g, f) € R. The
first claim follows from the 1-1 correspondence between self-adjoint operators and strongly
continuous homororphisms R — U(H) in Stone's theorem. Now note that ¢(g, /) is just

the Lie algebra cocycle. Let £ € H* and expand each side of the equality
MO L(f)e#HO L = L(Ad(a,(1))f)§+telg, f)E (1.14.14)

in powers of t, using L(R) H> C H™, h € Vect§!. On the left, we have

L(f)§ = a2 [L(f). L(g)]€ + o(t); (1.14.1.5)
and on the right, ,
LFYE+1L{{f, g)) €+ telg, £)€ + ol2). (1.14.1.6)
It follows that [L(f), L(g)) = i L(lf, g)) + i e(g, f), with
2
clg, f) = malc A {4+ f'}gdb. (1.14.1.7)

!ﬂ, :
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In particular, ¢(g. f) = 0 when either of the vector fields f, ¢ is in the Lie algebra of the

Mébius group. The second claim follows. n

1.15. Proposition. For each integer n > 0 and ¢ £ Diff*S?, #{¢)H™ = H™. The map
Difit§! x H™ — H"/T is jointly continuous.

Proof. The proof proceeds as in the case of loop groups [Wa2). The case n = 0 is clear. so
let n > 1. The operator {1+ Lo]" is positive diagonal with finite-dimensional eizenspaces.
and has domain A" = {1+ Ly]""H. For ¢ £ Diff*S?. let A = 7(0)" Lo #(6) = L(g) + a(a).
where g = ¢' %w and a(@) € E. Then {1+ 4]" is positive diagonal with finite-dimensional

eigenspaces. and has domain

m(6) E"={fe H: |

O+ APl < o} (1.13.)

By Remark 1.8, A restricts to a bounded operator from H* 1o H°! for each ¢ € R:
bence {1+ A]" restricts to & bounded operator from H™ to H. whence H" € #{o)" H™.
So r{@) H™ = H¥, proving the first assertion. Claim: the map ¢ — a() is continuous.
Let ém — ¢ in DUf*S?, and choose unitary operators such that H{dm) — n(0) in T(H);
let gm = 87 &, 50 that 7{(6m) Lo 7(0m)” = L(gm) + a{on ). and gu — ¢ in Vecr§1. Ley

£ € H®. Then the sequence of vectors

W(6m) [1+ Lo} 7 (ém) € = 7{00)§ = [1+ Lo] ' 76} (1 + Lign )] € (115.2)
in H is norm-convergent to
a(@)[1+ Lol ' w(6)€ = ()&~ [1+ Lo) ' m(e}[1 4+ Ligil & (1.15.3)

with [1+4 Lo)™? 7(ém ) £ norm-convergent to [1+ Lo)~! x(#) £. It follows that a(bn) — a(e),

and proves the claim. For £ € B", we have

7 ()" [1 + Lo]™ 7 {¢) €|
B+ Al

M:u Amv NA™£]] {1.15.4)

r=0

< K@) el

ft

i

N

where ¢ ~— K'(4) is continuous. Here we use the fact that, for ne H,

v
v

l4nll, = [HL{g)+ a(¢)inlls < K

=

s mlleer + laled il {1.15.5)
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and the continuity of © — ||

sed and © —~ a{@). We now prove the second assertion. Let
Cm ~ @10 DIfi*5, x(0y ) — 7{o}in U'(H) as before: and let §x — Ein H™ It is sufficient
to consider the case when ¢ is the identity and #(¢) = 1. in which case Lig) = Ly and

ac) = 0. We have

Elin 4 ?m&qﬁvmlmzn

M N:,@ﬂ,\:m» .lmzn - THASSLMI N::

[
s
o
(=21

Since ©m ~ 9. the K'{6,,) are uniformly bounded and B(8n) 1€k = Eiln — 0. Moreover,

w) 1+ L) 76m) € = 76 ) 1+ Lo £}

ST+ Lgm) + elom )] €~ [1+ Lo} ¢ 11.15.7)

D= mlem) 1+ Lol™ &,

Since (@) ~— I. the second term converges to zero. Since ald,.} — 0 and Gm — .%. the
N i

#{0m) Sk = wle1 &l — 0. o

first term also converges to zero. It follows that

2. The discrete series of representations of Diff-3t

2.1. Representations of the Virasoro algebra. A positive energy representation
x: Diff 5! — PU{H ) defines a pair of numbers (k. c). where 2 > 0 ic the lowest eigenvalue

of Ly. and ¢ > 0 is the central charge of the Virasoro algebra Dic =Y __CL, = C(.

€D

Lo Lo} = (m=n)Lmsn + MT.:u

5 = M) bmir0. {2.1.1)

with C a central element.

A representation ¢ : Tir — EndV, if constructed from a positive energy representa-
tion of Diff 5! (Theorem 1.11). would have the following properties: {a) 1 is a locally-finite
graded vector space, ie. V7 = Y aez V(n) (algebraic direct sum) with each subspace V'{n)
finite-dimensional; such that Vi(n) = 0 for n > 0 and V(0)# 0; (b) vis a graded ho-
momorphism, with the natural grading on Diz; in particular, the V{(n) are eigenspaces for
Lo (with lowest eigenvalue h € R); (c) the central element Q € Dir acts by scalar mul-
tiplication (by ¢ € R, the central charge); {d) The representation is unitary in the sense
that there is a contravariant inner product on V, ie. an inner product {., .) satisfying
(Ln€. n) = (£, L_, 7). With these conditions, we necessarily have A, ¢ > 0.

Let 1", " be representations of Wir satisfving (a)—(d). They are isomorphic, V = W _if

there is a linear isomorphism T : ¥ — W that intertwines the action of Bir. The following

1. Positive energy representations of the diffeomorphism group 13

are immediate: (i} Let {” be a sub-representation of V. Then U satisfies the conditions
(2)~(d). U, its orthogonal complement in V', is a sub-representation. If {” is irreducible,
it is generated by a vector £ € 17, an eigenvector of Lg. satisfying L,£ = 0 for all n > 1.
Conversely, every such vector { generates an irreducible sub-representation. In particular, if
Vis irreducible. then dim 17(0) = 1. 17 is completely reducible to a {possibly infinite) direct
sum of (mutually orthogonal) irreducible sub-representations. (i) V, W are not isomorphic
if they correspond to distinct values of (£, ¢): (i) For each pair (&, ¢) € R, there is up
to isomorphism at most one irreducible representation satisfving (a)~{d) with lowest L,-
eigenvalue h and central charge ¢ such a representation is called a unitary highest weight
representation. and (h. ¢) the corresponding highest weight. To be sure, we have the vector
space decomposition Tir = n_ @& 4 & ny, where na = M”awu Clyn, b =CLy & CC, and
the Borel subalgebra b = § & n,, with respect to which the Jowest energy veciors of an
irreducible representation satisfying (a)~{d) are precisely the primitive vectors.
2.2. Lemma. Let = : DIff*S? — PU{H) be a positive eneryy representation.  The
Jollowing are equivalent:

(i) H is irreducible;

(it) B/ is irreducible as a representation of the Virasoro algebra.

Proof.  Clearly, {ii) = {i). We prove the contrapositive of {i} = (ii). Let 17" be a proper
Dir-submodule of H/™ and L = A7+, the proper closed subspace orthogonal to A7,
To show that (@)L C L for all ¢ € Diff*S?, it is sufficient to show it for ¢ = o1},
the one-parameter subgroup generated by a vector fleld f. From the representation theory
of semisimple Lie groups, we know that I must be invariant under Meb,,, for each n.
Equivalently,

r{¢(tHLCL (2.2.1)

if fis in the Lie algebra of Mob,, for all n. Now L is closed in #. So the first assertion
of Nelson’s theorem (Theorem 1.9.1) implies that (2.2.1) also holds for all vector fields f
with finite Fourier series. The latter are dense in VectS? and if f,, — f in VectS!, then

@1.(t) — é4(t) in Diff*S'. Hence (2.2.1) holds for all f € VectS!. and £ is = proper

sub-representation of H. G

2.3. Remark. If H, & are positive energy representations of Diff*$%, we say that they
are unitarily equivalent, H 2 A, if there is 2 unitary map I/ : & — & that intertwines the

Diff 5 -actions, by which we mean that 7 X7 = = LU} for 411 /€ VectS' Claim:
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a positive energy representation H of Diff ™57 is characterised up to unitary equivalence
by the representation of Uit on the subspace of finite energy vectors H/™ By complete
reducibility. it is sufficient to consider the case when H is irreducible.

So suppose that H. K are irreducible, and T : K/% — [/i% i an isomorphism
of rapresentations of Wir. Up to a normalisation, T must be zn isomerry (since. up to
normalisation, there is a unique contravariant inper prduct on a unitary highest weight
representation) and hence exiends by continuity toa unitary map T : B — K. Itis 2asy 1o
see that 7 H % = K. and that T intertwines the actions of Vecy S on the smooth veciors.
Hence. for £ € H>,

Wml‘ﬁ.ﬁNm:Ebm - 0. 2.3.1)
Then T intertwines the Diffi"S? actions. and provides a unitary equivalence 7 : F — k.
Converselv. if T : H — K is 2 unitary equivalence, its restriction to the finite energy veciors
provides an jsomorphism T 1 F/in — R /in of represeniations of Jit. In summary, ¥ = K
if and onlv if /™ > plin,

2.4. Classification of the irreducible representations. (laim: the classification of
the irreducible positive energy representations of DiE“S? reduces 1o that of the unitary
highest weight representations of the Virasoro algebra. The latter is a well-known result of

Friedan. Qiv and Shenker [FQS): and Goddard. Kent and Olive {GKO).

2.4.1. Theorem (Friedan-Qiu-Shenker). I7 Vh.e s @ unitary highest weight represen-

tation of Wit with highest weight (h. ¢), we either have

cz21l, h20 {2.4.1.1)
or there are integers m = 3,4...., p=12...m~1,g=1.2....,p, such that
6 [Plm+1) - gm)® -1
- , h= . 4.1.2
¢ m{m+ 1) 4m{m + 1) (24.1.2)

This theorem provides the necessary conditions for the existence of unitary highest weight
representations. It follows from a detailed analysis of the zeros of the Kac determinant in
2 Verma module approach. This approach provides a uniform construction of irreducible
highest weight modules as the quotient of a Verma module by its maximal submodule {see
Chapter II); unitarity is not manifest, but must be checked using the Kac determinant.

In the case ¢ > 1,4 2 0, the unitarity of this construction does {ollow from the FQs

fthe
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analysis. (See [KR] for an exposition.) For 0 < ¢ < 1, the necessary conditions (2.4.1.2)
were shown by Goddard, Kent and Olive [GKO] to be also sufficient conditons, using a
manifestly unitary coset consiruction. We postpone a description of this until Chapter 111

The unitary highest weight representations with ceutral charge 0 < ¢ < 1 constitute the

discrete series of representations.

2.4.2. Classification of irreducible positive energy representations. The coset
construction of the unitary highest weight representations of Tir also construcis them as
positive energy representations of DIff "S? {see Chapter 111}, These discrete series repre-
sentations are clearly oll the irreducible positive energy representations of Diff*S? with
central charge 0 < ¢ < 1. up to unitary equivalence; and, in this dissertation, we shall
only be concerned with them. More generally. however. a result of Goodman and Wallach
[GW] guarantees that every unitary highest weight representation of the Virasoro algebra

integrates 10 a positive energy representation of the diffeomorphism group of the circle.



Chapter 11
Primary fields associated to the
discrete series representations

We introduce the primary fields of Belavin, Polvakov and Zamolodchikov [BPZ] associated
to the discrete series representations (at a fixed central charge) of the Virasoro aigebra.
and briefly skeich their classification in the Verma module approach of Feigin and Fuchs
[FF1}-[FF3]. The basic concepts of conformal field theory — s:ate-field correspondence,
correlation functions. braiding v?vmnﬁmmm‘ operator product expansions — are developed. In
the Verma module approach. singular vectors or, equivalently, the BPZ differential equations
piay 2 central role. In particular. we use them to compute some braiding coefficients. Some
technical difficulties remain unresolved in thic approach. but these czn be overcome using

the coset construction of primary fields in Chapter II1.

H. Definition of a primary field

1.1. The space of densities. For A. i € R. we define the space of densities
Vi = {f(9) e (dB)* : f e C®(5Y)}. (1.1.1)

The universal covering of the diffeomorphism group of the circle acts on V3,u by reparametri-
sations, 6 ~ ¢~2(#). We identify 1), with C*°(5?), with a Jjointly continuous action of

Difi"§1 given by

(&, f) — P o= g7 E)-8) TVLVL\ oo™l (1.1.2)

We remark in passing that the linear map Waut1 — Vi f— € f, intertwines the action

of Diff *5%; and that the adjoint action of Diff *5? on VectS? identifies the latter with Vi

A= =1, u = 0. The vector fields on the circle, regarded as the Lie algebra of Diff 51,
acts jointly continuously on V3 ,. Let 1»\. “= be the subspace of elements with finite Fourier
series; this is invariant under the Lie subalgebra of vector fields with finite Fourier series,
and so can be regarded by complexification as an ordinary representation of the Virasoro

algebra with vanishing central charge.

——.
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1.2. Definition. Let Vi, V; be unitary highest weight representations of Wir. A primary

field is @ non-zero linear operator ¢ : V, @ «Qﬁa ~- V; that intertwines the action of Tix.
Let V7, 17 respectively have highest weights A;, hj (at a fixed central charge ¢). It ic easy
to see that u = h; — h;. Let =1+ A, the conformal dimension of ¢.

1.3. Uniqueness of primary fields. For fe awﬂa, let ¢(f): Vi — V¥, be the corre-

sponding linear operator. Let ¢(n) = (e} and define the formal expression
o(z) =y glr)sTr-{rrh-n) (1.3.1)
nes
which satisfies the covariance relations
[Lom, &(z)] = nst%%vi?i:us &), (1.3.2}
This condition essentially characterises the primary fleld. To see this, we note that 2 unj-
tary highest weight representation of Uit is generated by its one-dimensional lowest energy
subspace, so that the sesquilinear form on V; x Vs given by (€, n) — (d(=) £, ). is uniguely
determined up to a scalar multiple. It follows that a primary field is characterised up to a

scalar multiple by (the central charge ¢ and) the ordered triplet of numbers {hhi Ay

1.4. Conjugate primary fields. Complex conjugation. f =+ f~. defines a conjugate-

linear map « : V3 , — ¥} _,, that intertwines the action of DIf 51, If ¢ g “,..mw; — 17

is a primary field, then there is also the primary field ¢™ : ¥; &V - 1} conjugate

-

to ¢, given by defining ¢*(f~) to be the formal adjoint of ¢(f), for each f ¢ Mwﬂs, ie.

@67 = (€ ). Finite-dimensionality of the Lo-eigenspaces guarantees that
#(f)" is defined on all of Vi. Let h =1~ A, We have, formally,

6(z) = {@(zhyzm ) (1.41)

The following is a trivial example of a primary field: i V is a unitary highest weight

Tepresentation of Wir, define ¢: V ® S\‘M.n ~V,withA=1,p=0, by ¢(z) = .

2. The Verma module approach to primary fields

2.0. Overview. There are two complementary approaches to the unitary highest weight
Tepresentation theory of the {affine Kac-Moody and} Virasoro algebra(s). The first, analo-

8ous to Borel-Weil theory in the representation theory of compact Lie groups, constructs a
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highest weight representation as the quotient of 2 Verma module by i1s maximal submod-
ule. and is not manifestly unizary. The second, analogous to the Hermann Weyl theory,
relies on the decomposition of tensor products of unitary highest weight representations to
ConStruct new representationt in a menifestly unitary way. To each of these approaches.
there is 2 corresponding construction of the associated primary fields. The Verma module
approack of Feigin and Fuchs {FF1-FP3% 10 the study of the discrete series representations

i¢ skeiched in this section.

2.1. Discrete series representations from Verma modules. The Virzsoro algebra
Tir is a direct sum of linear Spaces g £ gy & g4, where po is the Lie subalgebra spanned
by {Lzr : 7 > 1}, and gp by Lg end C. For (A, ¢} € R?, the Verma module My . is defined
in the following way. Let C , be the one-dimensional representation of the Lie subalgebra

E=poSgs.givenby Lo =0(n>0),Zy=hand C = con Ch. . Then
Mie = nd (" Co = U(Ti5) Gy G (21.1)

ie the representation of Yir induced by Ch. o where (1) denotes the universal enveloping
algebra of the Lie algebra . The Verma module My . satisfies the conditions {a)-(c) of
¢ 1.2.1. but not necessarily {d). However, up to scalar multiplication. there is a unique
contravariant sesquilinear form { .. . ) on My . without loss of generality, we require that
Ammmv > 0for £ € Cy .. We are interested only in those (£, ¢) such that this form is positive
serni-definite: the set of such (h. ) is given by the FQS analyvsis. Theorem 1.2.4.1. In this
case. let A’y . be the kernel of the form: it is the unique maximal proper submodule of Af, ..
Then 1% .. the quotient of M o by Ay ., is the unitary highest weight representation of

Tir with highest weight (A, ¢).

2.1.1. Singular vectors. A vector £ ¢ M; o is a singuler vector at level N i€,
and it satisfies Lof = (h + Ni& Lo =0(n > 0) Clearly, a singular vector generates a
proper submodule. Let 1% . be a representation in the discrete series; Feigin and Fuchs

{[FF1}-[FF3] have the following description of the maximal proper submodule & ..

2.1.2. Theorem (Feigin-Fuchs). Let My, be the Verma module with highest weight

{h. ¢} in the discrete series, with

§ }U?TEL.HvIQ:LuIW
m{m+1) dm{m+1)

c=1-

(2.1.2.1)

The magimal proper submodule Eh,c s generated by o pair of singular veciors at levels pg

and (m — p)(m + 1~ g).

i i he dise e e oy
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We make a choie of a vector (i o € Gy, satislying {(a « (n,c) = 1. Denote the pair of

singular vectors of this theorem by Op ,(x . and Opp msi—gCh, o Tespectively.

2.2. Classification of discrete series primary fields. Let M; = M, ., i= 1,2, be

Verma modules and £3 € R. Up to scalar multiplication, there is a unique sesquilinear form

$( ., .;z)on My x My satisfying
D&, Lomm; 2) = B(Lm€, 7 2) = nsth. +ha(m+1)2™ ) B, 7 2) (2.2.1)

for £ € My, n € M. In fact, we define & inductively on My x M; using (2.2.1), beginning
with the vectors {; = (s, ., ¢ = 1,2. The form & defines a primary field if and only if it
descends to Vi x Vo = Vi, o ¥ Vi, . If the Vi, ¢ = 1,2, are discrete series representations,

then, by the Feigin-Fuchs description of the maximal proper submodules, this is the case if
,

and only if

I
=

QADEL»MT Ca; Nv = QAQBIUTH.:IQ,D, G Nv Awmwmv
WAﬁT Qmu.nuﬁw“ Mv = @Aw_», 03!3.3+~!f,ﬁm“ 2) = 0. Ammwvv

1t is not hard to see that these are polynomial equations in h3, of degree not exceeding the
level of the corresponding singular vector. The singular vector O ;(; is a linear combination

of terms of the form L_;, ---L_;, { with i + -+ + 4, = pg. Up to scalar multiplication,

P01, o5 ) = 27 {mRa Rl (2.2.3)
Then using (2.2.1) repeatedly, we check that
H(O0p, 0,15 (i )= g{Pitha=hoi~pios Gprarim Bz, ha), (2.2.4)

with P(z) = gp, ¢, m{%, ha) @ polynomial of degree < p;q;. Its roots have been determined

by Feigin and Fuchs [FF1]-[FF3].

2.2.1. Theorem (Feigin-Fuchs). P(z} = g, ¢ m{z, h2) hes the pig roots

2
B, = Pt D gl - 1 pEp-pt L -p+3,. b L

& 4m{m + 1) ! (2.2.1.1)

¢g=@p-qa+tl,g-a+d. . atg-1
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II. Primary fields assoziated 1o the discrete series
It follows that the polinomial equations gp, o m{S. k1) = Gmep, matmg, m{T.h2) = 0. Le.
the equations {2.2.2a). have the solutions 7 = A, .

p=lp—pl+ 1 p: min{pz + p; ~ 1. 2m — py — py — 1.

g=lez— @} + 1 e min{g: v g = 1. 2(m - 1)~ g — g — 11

In particular. each Ay o is the highest weight (A .. ¢} of a discrete series representation.

2.2.2. Remarks. The equations (2.2.2b) have the same solutions as (2.2.2a). In fact. let
¥{ ., .;z) be the sesquilinear form on M, x AM; satisfving

. Ly €
VP L o)~V Ll oyzi= ,.simi,+3§+:.,.s Vs mz). {2.2.2.1)

{for £ € M. 12 M;. Then. up to a scalar factor,
Loy Loy G sy =W, Loy, - Ly, (e o) {2.2.2.2)

The claim follows from the invariance of the solutions (2.2.1.2) under the permutation
(p1-@1) — {p2.g-). This completes the classification of the primary fields associated to the
discrete series representations.

With a fixed central charge ¢. we call an ordered triplet of highest weights {ha. hy. h,)
an allowed verter if there exists 2 primary field ¢ : V4, . & fk..x.ﬂu;:v)u — Vi, oo It is easy
to check that permuting an allowed veriex produces another allowed veriex. If h,. k, are
highest weights. we let {h;. ky) denote the subset of highest weights 3 such that (hy. ;. Ay)

is an allowed vertex.

3. The state-field correspondence

3.1. The Tir-module generated by a primary field. Let ¢: 17 & vw\w: -~ V2 bea
primary field, where V5= 1%, .. 1 = 1,2, are discrete series representations and A = 1 — Aj.

The primary field o(z) generates a Wir-module, given by the linear span of the elements

{iom, ...w;a,i?y (3.1.1)
defined inductively by [BPZ]
; S XS ; ‘
{Int}tar= (AT ) (=2 e | 02)
: =0 . (3.1.2)
i = m+ 1 AmAler
- ¥(z) M.uc MR RCE) Lial.

I Primary fields associat

It is straightfo. .rd to check that 1,0 = 0{m > 0) and [o¢ = hs o; that

Lonlow = Lalpw = (m—= 1) Lmpath + = ?:w -
14

(Bards

and that ANLQQ?V = mﬂuﬁ,ﬁuv (check by induction). Each element v{z} is a formal series in
- with linear operators T : V| — ¥} as coefficients: in particular, .%n p{ 2} makes sense. The
Tir-module so obtained is clearly isomorphic to the quotient of the Verma module M, . by
a proper submodule, and its lowast energy subspace is spanned by the primary field o(z).

The following result is well-known but. as far as we know, not proved in the literature.

3.2. Proposition. The Tit-module generated by a primary field © of conformal dimen-

ston {hg. ¢) is isomorphic lo the unitary highest weight representation 1%, ..

Proof. Let #(s) = {Oc}{z) be a singular vector at level A'. Then L% = 0{n > 0): and

Low = he, h = hy + N. Equivalently, we Liave a subset of the covariance relatic

:

<+ a x| v mo_: ;
[Lm, ¥(2)] =27 Mm!,c;ufrfusnriu () fm 2 (3.2.1)
or, taking formal adjoints term-by-term,
Lo () = 27" L e ()] A {=m = 1™ e (3.2.2)

for m > —1, where

We claim that

a finite sum, where the §, are in the Uir-module generated by ¢~ the primary field conjugate
to ¢, such that Lob, = (h~n)é, and &y = A.\CZQQ.. In fact, we note the following. Let

x(z) be an Lp-eigenvector in the Vit-module generated by ¢, Lyx = Ay x, and et

Then

1

ooy =—{lowp—2h, 27y
A\mlwkw. = AMtﬁx.w +3:z7" Tm‘;.w +327° :,;;J +
{m~ wvﬁmlﬂxv' :U.;Mi:.:yw. 3 szﬂ;.r:m!;ﬁ;ﬂ.
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where we have extended the action of Dir on elements ({z)tothel . span of the elements
p(z=1) (=), p a polynomial, in an obvious way. The claim follows from these relations. Now,

for each integer M > 0, we have
(Lo, {EMe}(2)) = 2 L {7} ) R (mm = 1) = {13771 (3.2.7)

for m > —1. It is easy to prove this by induction on M; the case M = 0 is (3.2.2).

Substitution of {3.2.4) in (3.2.7) yields

M 2 (h = )M {{Lo . 6al2)] - 2L G (2} — A (-m = 13278 (2)} = 0 (3.2.8)
n20
for integers m 2 —1, M > 0. It follows that each term jn the sum (3.2.8) vanishes. In
particular, the zeroth term vanishes. Then, replacing ¢ by ¢° (the same arguments apply)
and using (3.2.1) with m = 1, we obtain
d
Lomd(e)] = =™ L) 4 h(-m+ D™ 9(5) =0 (m2-1). (329)

Together with (3.2.1), this provides the full set of covariance relations for ¥(z). If the
wmﬁﬂwm&aﬁmﬁﬂm,mcmoﬁ nrmvnaﬁwmm_mx“am® ﬂﬁ.n?flyu .Iew.deowmn&wa

multiple,

ZNL, . :N.i... 6Y(=)1, €2) = (=)™ {x(2) Legy - Loi G50 (2)s (3.2.10)

where m = ¥, ij, and (; € V; are lowest energy vectors, It follows from (3.2.10) and the
full set of covariance relations for ¢ that (#(2)&, n) = 0 when £, i are lowest energy, and
therefore arbitrary, vectors. Hence ¥(z) = 0, and each AML: ooL_; ¥}=) = 0. Since the
maximal proper submodule of My, . is generated by its singular vectors {Theorem 2.1.2),

the Proposition is proved. )

3.3. Remarks. We shall write ¢(£; z) for the element in the Bit-module mmsm»m_ﬁma by @
that corresponds to the vector £ € Vi, .. This requires making a choice of a lowest energy
vector (a,,c € Vh,, e, and the assignment ¢(z) = &{Chy, e ) In particular, we make a choice
of a vacuum vector (g, . = §2., i.e. a lowest energy vector in ¥p,.. Withno me of generality,
we take (a,,o to be a unit vector. When the primary fieldd: V1 ® ﬁ»\. ..t: — ¥, corresponds
to hy = 0, hy = h3, the isomorphism of Proposition 3.2 ¢an be m.?ou by mapping an element
¥(z) to $(£)f2]s=0. This makes sense because $(z)(2 is a formal power series: we have

G(2)2 =Y 2" $(-n) s (3.3.1)

n20

NN

i

I1. Primary fields associated to the discrete series 28

for arbitrary #{z), it follows by induction using {3.1.2) and L, 12. = 0(m > —~1). Then we
can make choices such that
GAM vanruo ={. {3.3.2)

We may also call ¢(£: =) a secondary field {when £ is not a lowest energy vector), and a

descendant of the primary field &{z).

4. Correlation functions and the BPZ equations

4.1. Conventions. In the following, we fix a central charge ¢ = 1 — 6/m{m + 1) and
consider the corresponding discrete series representations 13 = 1% ., for each of which we
choose a preferred Fﬂmmﬁ energy vector {p € Vi with unit norm [ICa]i = 1. In particular.
we choose a vacuum vector 2 = (p. If 6: V), & d.y\.w«. ~ V4, is a primary field of conformal
dimension hi, we denote by enw\v its normalised form, which satisfies

(080, (Cans =) Gas Gry) = (@50, (=) Cny oy ) = =7 TRt (4.1.1)

s

TRy w A .o . . . .
Then 6%? = &%3 . Let T = {3,7,...}, be an indexing set for the discrete series represen-

tations at central charge ¢ we shall always have 0 € 7 and Ay = A1 = 0. Then we may
ki

write ¢ € V5 for ¢, € Vi3 &k, for &}, 5 (i, 7) for (ke &) and Ay = hy o
4.2. The BPZ equations. Let ¢; : Vj, ®f\x_,w:»_1ft — Vi, 1= 1,....n, be primary
fields, with ky = kpsq = 0. We call the formal series

A&‘,An:v b .@Hm.ﬂwvv = M A@:ﬁsav tr .@fﬂawf\w, .QV Hﬂiaib: . .,m»l«f‘bw y AAAM,:

(my}

where A; = h;+ ki~ ki1, 30 n-point function or, more ambiguously, a correlation function.
The identities Op, g8 = Omepransi-g; 8 = 0, and L2 = 0(m = ~1,0,1), imply that the
n-point function (4.2.1}) is a formal solution to a set of 2n + 3 partial differential equations,
independent of the k;’s, in the region |z.] > ---> |z}

In fact, if (=) is an element of the Vir-module generated by the primary field ¢(z),

then, using (3.1.2) and the covariance relations (1.3.2), we obtain
AQ:ANZV C .Am\lz_ﬂmwﬂﬂv - ,QXANMV.Q, .Qv =Lom Aﬂnﬂhzv coehie) ()02, 12) {4.2.2)

for m > 0, where

o - g -
NLIB“IMAHN.IN_,V +u|®lN|.+w~u.A’3~+~va.\luwv m prwv
3
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1L Primary fields associated to the discrete series

and we mean by (z;—=;)~! its binomial expansior in the region 1zx] > +++ > |51}, Proceeding

in this fashion, we obtain the 2n equations corresponding 10
(6020} {0500 2 y{2)2. 2) =0 (4.2.4)

n. These are the celebrated

with {p.c} = (pi.g:) apd {m - pi.m+ 1 - g:).and 1= 1.....
BPZ equations [BPZ). The other 3 equations are the Mébius equations

M,UT,t%t#fairi@:?Y:&?Lvuo Aanxro.:i.m.s

i=1

which refiect the invariance of the vacuum vector {2 under the action of the M8bius subgroup

of Diff*$'. In principle, we can use the regularity properties of these equations {which

have to be proved) to guarantee the convergence of the n-point function to a multi-valued

holomorphic function on the domain |2l >
of Yoshida and Takano C.j‘ This is the method of Tsuchiya and Kanie [TK] in the loop

.-+ > |z;]. by applying the following theorem

group LG case (at least for G = SU(N))

p.w Theorem (Yoshide-Takano). An integrable Pfaffian system of complez partial

differential equations

n
F Ai{w)
= e dw; (4.3.1)
is said to have a regular singular point at w = 0 if the Ajlw) are holomorphic on some

polydisc D = {w € C* : lwil < r;}. Then every formal power series solution

flwy=w> Y fau™, {4.3.2)

m20

where wot™ = [[wd ™0 € C", meT" are multi-indices. converges on D 1o a possibly
‘ - i

multi-valued holomorphic function.

4.4. Remarks. The change of variables {TK]

W = Zn, Wi= nm\hm+~ T wm dv AA&HV

identifies {z € C" 1 |za] > -+ > I5]} with {w € C" 2 Jun} < 1:0 < hwel; 0 < Jwif < 1,2 <
i< n~—1}. Weshalllet Dy denote the polydisc {w € C" : Juy} < 1,1 < i<n-1}
A disadvantage of the Verma module approach to the study of correlation functions

in the case of the discrete series representations is that the regularity properties of the

Il Primary fields associated to the discrere series 30

BPZ (plus Mdbius) equations are not manifest. This is to be contrasted with the Knizhuik-
Zamolodchikov (KZ) equations in the case of positive energy representations of loop groups.
where they are {TK]. Our use of the BPZ equations will therefore be limited to some special
cases where we are able to prove the required properties. The shortfall is compensated for

using the coset comstruction approach of the next chapter.

4.5. 2- and 3-point functions. For n-point functions with n < 3, the Méabius equations

alone are sufficient to prove convergence. It is straightforward to recast them in the form

a7

Y = ilw) f (4.5.1)

and observe that each A;{) is holomorphic on the polvdisc Dy. Moreover, they are readily

solved.

4.6. 4-point functions with a generating primary. We shall mean by a generating
primary field one that has conformal dimension Ay, or hay. We consider the 4-point
functions {04024} -¢1(31)) such that some o is a generating primary. To be definite. we

let hy = hy . hay in the following. Then we have

3 ., .
i‘kyeurh;uemno. {4.6.1)
vielding the BPZ equation
3 a° _; @ .
Lhy + 2822 +Mﬁésmi .wl«.ﬂlml&»...i Ty i=0 (4.6.2)
E R

in addition to the Mdbius equations. The latter have the general solution {(BPZ}

=116 =207 glz), (4.6.3)
i<y
where
(22 — 21 M zq — 23)
(73 = 5 ){z4 — 22)
is the cross-ratio, and the 7;; are real numbers satisfying

2hy= Y st 3 v (4.6.5)

i,4<j (1%

T =

: {4.6.4)

for each j. In fact, we can choose ;7 and 923 arbitrarily, and use (4.6.5) to solve for the

remaining exponents. More precisely, we define {4.6.3) on the domain {z,] > -

i+d

branch cuts to handle the multi-valuedness, i.e.

(5= )9 = (wy w1 = oy ) (4.6.6)
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with the latter factor defined by its binomial expansion. We have |z} . 1. Substituting
(4.6.3) in (4.6.2). we obtain

dg miz) dyg palz) -
R A = 0. 4.6.7
voﬁvw .HClnwnH._yHth!nmm ¢ )

where p;{z) i¢ a polynomial of degree < it in fact.

3a.
iz {4.6.8)
2ha+1
2 3zalze +1) 4 Ivizom .
P4 S i [ 27— | 21 - 7).
PR 2ho1

~

In particular. (4.6.7) is Fuchsian with regular singularities at z = 0. 1 and .

4.6.1. Lemma. The 4-point function {o5(zq) - &1{z1)), with come hy = hyy or by,
converges to a multi-valued holomorphic function on the domain [z5| > - > 2],

Proof. We rewrite the BPZ equation {4.6.2) and the MSbius equations in the form

w99
Q::

where § = {g. £ ). and show ”wm: each A;(w) is holomorphic on the polydisc Dy, We can

equivalently use § or F= C. P v For i = 2. 3 and 4. this follows from
wim=- = o) = {4.6.1.2)

where

—wy J{1~wy udws {1 g 1—wyws
DJTHV - IC wy J{1 :_c»EL, QQT&V - E, ag = 0, (4.6.1.3)

(1-w2){1-uows) (1— w3 ){1~w2w3)

and its w,-derivatives. For ¢ = 1, it follows because (4.6.7) is Fuchsian with a regular

singularity at z = 0. Explicitly, we have

&g 8g 4ha+2
= : e + Bolw) pn . 4.6.14
5t = Bl — g (Al Ao+ baupalas (16.1.4)
with
Bilw)= =2 fylw) = (4.6.1.5)
1 - 1—ury Eu, - {1—wy Mi~-wiwaws)

Integrability of (4.6.1.1) is immediate because it is equivalent to the single-variable equation

{4.6.7). The Lemma follows from the Yoshida-Takano result (Theorem 4.3). 0

I Primary fields associated to the dis

The proof of Lemma 4.6.1 extends to any 4-point function {@g{z4) - 011

BPZ equation that reduces to a Fuchsian equation. say of order n, with regular

at T = 0, 1 and oo, i.e. to an equation

n

. pilz) g
vl!hv[lx’m =0 (4.6.1.6)

TR — 2VE den—k
s (1= z)* dr
where pi{z) is 2 polynomial of degree < k.

4.7. The general n-point function. In principle, analogous ar

equations for arbitrary n-point functions. This requires manipulation of the BPZ equations.

and certainly some knowledge of the expressions for singular vectors. Th { this

approach appear to be too great, and we defer to Chapter Il a proof of the following.

4.7.1. Theorem. The n-point function Aglk valued

holomorphic function en the domain {z,| > -

4.8. Generalised correlation functions. Llet ¢;(z).7 = 1,..., n. be primary fields as

in § 4.2, and let & € V). We can also define correlation function of secondary fields,

{on(En:

o€y M2, 2

When it is necessary to make a distinction, we shall call this a generglised correlation
funciion. The properties of generalised correlation functions typically follow from those of
correlation functions of primary fields. This follows from their construction using correlation

functions of primary fields “with insertions™ (of the “energy-momentum tensor™). We s

the necessary arguments, following {BPZ].

Let I denote the identity operator, regarded as the trivial primary field of conformal

dimension 0, on each V. Define

(L, T() = 27 LT(2) 4+ 2m + 127 1) 4 55 (0

The basic observation is that the n-point funclion (assumed to converge by

with m-insertions

(T(zm) - T(21) bnlzn) - 02(21)92, 12) (4.8.4)
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is comvergent for (x| > +-0 > izy] > Iza] > --+{z;]. This foliows by commuting the
Ly{n2> ~1)tothe right. and the Z, (n < -2) 10 the left, until they annihilate the vacuum
vector (2. This procedure picks up commutzators which are evaluated using the covariance
relations for primary fields and the energy momentum tensor. We obtain (4.5.4) as the

differential operaior

=1

=1

o\w <] ki e
m T 0% (T = Z5) (2 - MU 365, + Zm =2 (4.5.5)

g1

aciing on

Tlzma) Tz 6n(2r) 61 (21)2. ). (4.5.6)

Tierating this procedure reduces (4.8. 4) to differential operators of the form (4.8.5) acting on
the n-point function. It follows that the n- point function with m-insertions is appropriately
convergent. We note two points: (2) As 2 function in the z- variables. the n-point function

with m-insertions analvtically continues to & holomorphic function on
{2 Qg n(is ) g, £ )s (4.8.7)

as a function of z;. it is holomor rphic except at Zi.j # d,and 5. = 1,... . n. where it
has vOHmm‘ {b) The same analysis applies when the insertions of T(z;)'s are permuted and
Eﬂmnmﬁmwmmn between the primary fields; the resultant holomorphic functions are all equal

in »rm sense of analvtic continuation in the z-variables.

Now we claim that the generalised n-point function (4.8.1) also converges in the domain

|zn >+ > |2;]. Moreover, the generalised n-point function with m insertions also converges
as before. has the form of differential operators acting on the correlation function without
insertions, and satisfies (a) and {b). This is proved by induction, beginning with an n-point
function of primary fields ¢; (€6 20), & a lowest energy vector, and an arbitrary number of
insertions. By taking a certain contour integral in the variable z, the insertion of T(z)is

removed while replacing 2 vector & by L,6(m ¢ Z). The contour integral is given by

.N. w'nmm hp. - NLSAI A\HAHSV N ..M;AHHVM.?.V &:Ama“ Zn}e .&;muu Nuv..Q, .Qv, AA.m.mv

where the contour C is a small anti-clockwise loop around z;. The claim is that (4.8.8) is

equal to
AN.,AHSV " .NJAva&:AM:M Inje .QAHSMR N_.v N ..ﬂfﬁmnn vabu .Qv Akmmv

discrete series

L. Primary fields associated to the

Formally, we have

Kw@ﬂ?luvsiﬁiﬁm“ww = ¢ fuwﬁ?tuvsiﬁ,iﬁmui
- 2mi .

1
(]

mui HY ) L 8161 2)

o L1 )
-3 ms N v (=)™ 0(& 2 Loy
e

= ¢{Lnmé: ).

Here we deform the contour C into a pair of contours C;, circling the origin at radii r;,

ry = |zl 4 g, 7 = |z} — £ £ > 0. taken anti-clockwise and clockwise respectively. On (7,
L o=zl 4 g, T I

since |z} > |z}, we can use the series expansion of T

the series expansion of &{&: z) Tz} is valid. It is straightforward but unedifving to make

o

(z)&{€: 2); and on Co. with i < 2],

the arguments rigorous.

5. Braiding relations of primary fields

5.1. Definition of braiding. Let 17 =1, .1 = 1. 4. be discrete series representa-

tions. Then there are 4-point functions
(¢ph, (z0)8hn(2)80%, (22)8hio (21000, 2) (5.1.1)

indexed by the highest weight {the “channel™) h € (hy, ha) 1 (ha, hy). At the same time,

there are 4-point functions
(805, (2080 k(22)85%, (23)800 (2000, 2) (5.1.2)

indexed by the highest weight k¥ € {(h4, ha) N {ha, h1). Since 4-point functions satisfy the
Mobius equations, they are essentially holomorphic functions in a single variable, the cross-

2hy
ratio £ = (2 — 29 )(23 — z4) /{27 — 23){22 — 2¢). Solet 2y — § and 2z, — o¢ In {2} times)

the 4-point functions to obtain

{¢heal23)80%, (22)0h0s Cag) (5.1.3)
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and

{0722 Yo (2300, Cay ) {5.1.4)

respectively. We may call (5.1.3) and {5.1.4) reduced 4-point functions. The 4-point func-
tions (3.1.1) and {5.1.2; satisiv the same set of BP7 and Mobivs equaiions. but in gif
ferent domains: |z} < 1 and je] > 1 respectively. This suggests that there are mazrices

(Chahabehay \guch that
. . hehyhahs P
AQNW uvon B 122)0h; - Ca MAen NJVG»ETLIE (g} O {5.1.5)

iu the sense of analstic continuation in the variable £ = 22 /23, If such a braiding relgiion
exists, then. using the covariance relations for primery fields. this relation must also bLold
when we replace the lowest energy vectors (y,, (s, by arbitrary veciors §elh.ne Vi,

Moreover, it must also hold with insertions of T'(z)s. It is therefore Jjustifiable to write the

braiding relation simply as
ot ha Ay Ky hahoh, -
ﬁ...Tuvo;_ 22) M 9?»?39»3 23)C \ (3.1.6)

valid on a domain to be specified. We can check that the sets of channels (hy. h3) 1 (B, hyd
and {hy. fi2) 0 (k3. hy) have the same number of elements. so that the braiding mairir

Ami. hshahiy i square: as a connection matrix. it must clearly be invertible.

m.w.‘ “Abelian” braiding. The simplest braiding relatjons occur when there is only one

available channel: we call such braiding relations “abelian”. An example is when a 4-poins

function reduces 10 a 3-point function. Let £ = z2/23. We have

(055, (22)002, (22) Cuyy ) = 57770 72k 22 (1~z)"° (5.2.1)
on |z| < 1; and

(8630, () (o 2) = 3205720 g (1 Ly (5.22)
on |z| > 1, where o = hy + hy — hy. Then

90hs (3306000, (22) = @03, (22)803,, () €7 {hstha=ha) (5.23)

on 0 < arg(z) < 2w, in the sense of analytic continuation. Similarly, we have

—~
w
o
vin

2

. @ hatha~h}
9“”” LT wuvﬁ#ucAwuv = }uAJ QJJOAJV njA 3t+ha~hy

11 Primary fields associated 1o the discrete series 36
on 0 < arg(z} < 2r. So we obtain

3:3> Ahsha0 _ wi{hathy—h)
Q:u? AJ\C.«S =€ ’ . (

w
e
=

5.3. Braiding relations of generating primaries. The next simplest braiding rela-
tions occur of course when there are only two available channels. This is generically the
case when one of the primary fields in the 4-point function is a generating primary field
Let Vi = V4, be discrete series Tepresentations as in § 5.1, with hy = hy 5 or hy 1. We recall
from § 4.6 that the 4-point functions (5.1.1) and (5.1.2) then satisfy a second order Fuchsian
equation (4.6.7) with regular singular points at z = 0,1 2nd co. Up toa transformation,

this is just the hypergeometric equation.

Let 712, 723 in the equation (4.6.7) be respectively solutions to the quadratic equations

1

Ire(nz +1) - (4hy + D{me+hy) =0,

‘ (5.3.1)
Iraa{ms + 1) = {4hy + 2)(703 + h3)

0.

It

Then (4.6.7) reduces to the hypergeometric equation

H:ni%.+3i?+mi$ ~afig =@ {(5.2.2)

with

4hy + 2
3

8hy + 1 PRV

a+g = 22t = 2{71z + 703) (5.3.3)

3
4hy + 2
afl = 291070 + Nm Ta-

= 2712

For convenience, we make definite choices for the parameters. Let

iHIFHAS.TCIS:L —1—Ips(m+1) lfd:
M2 F e gy = T T L) - gy ,
2(m+ 1) 2m+ 1)

R Ao+ ho — (302 + Y23}, (5.3.4)
% = \wuffiu - \Nuff + }w - m.«»u + Qmuvw
when h; = hy2; and

H+?~AS+CIE:L _ H+?&S+$!§§w
T2 = 5 T E e

2m
= Rpttgy = gy gy + hy - (712 + 723), {5.3.5)

«
8= by g~ Ppeae +he = (2 + Y23 )

when by = hy ;. We note that Yo+ 8~ 7and a- g are nop-integral.
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The theorv of the hypergeometric equation (5.3.2) is well-under. d [WW] [IKSY}:

we quote the relevant results. It has the Riemann scheme

0 1 o
0 0 o |. (5.3.6)

1-7 1-a-48 8
When ~ and o — 8 are non-integral. the local solutions at 7 = 0 and x respectively are
non-logarithmic. Let g {z: 1) denote the local solution et the singular point = p. witk

characteristic exponent v,

golz: 0) = Fla.§.n: z)

mianHliuuﬁu)ﬂolu,“.p.mlq+p.wlﬂ.2
) (3371
gx{zia)=7 om._ﬂo.o!.w.w.w.plm'“.w“urkv
QBAﬁEuu:m.ﬁa.m$J+w,mlb+rnlv.
where -
Fia.3.9:2)= M (e (5)m ™ (5.3.8)

Yo {1)m

is the hypergeometric series. convergent for |z} < 1. and (¢)m = pleg +1)--(p+m— 1%,

By analytic continuation.

o)
3]
o
2]
H
L
=
3
I
G,
-
o
<o
o

B {golz: 0). golz: 1 =21 ={

on the domain 0 < arg{z) < 27. where

min D(MT{8~20) ml:liwov {2~ {3~0a)

¢ AT G-o)
(O (r-a} (Q—~+ T (1-0)
Pla.8,y)= {5.3.101)
mﬂ.mﬂiloiu_ m...,_:;.l.m: MI-{o=5)
{aji{~—0) O =~v+o)l{(1-4

when a. 3. 8~ and 7 — a are non-integral (in addition to non-integral 7 and a — 3). We
note that: (a) Each side of {(5.3.8) is analytic in z.a, 8 and 7: (b) The gamma function
T{z) is analytic except at the points z = —n, n = 0.1..... where it has simple poles: it
has no zeros, since T(z)T(1 = =) = »/sin x> and sin z is an entire function. We deduce the
following. Let 7 and o~ be non-integral. i a, §, f—+ and 7 —a are also non-integral, the
connection matrix P(e, 8,7) has no vanishing entries. When precisely one of a, 8, 8~

and 7 — o is an integer. there is precisely one vanishing entry.
o - o V

5.3.1. Proposition. Let hy = hyy o7 ha. The braiding relation

82 (23)043%, M 812 (22)80%, (2a) CRa M (5.3.1.1)
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is valid in the sense of analytic continuation on the domain 0 < arg{z) < 2r. The braiding

coefficients are given by

Qfaqu‘fli.«uu
A@Lr Crng ) Pla,f.7) a.,,:S

Aghahah .
where Ci,n. = =C; . it with ks = hp, oot 0T Apdiq and hy = Py 921 07 Rprgn

depending on e\:w%mn hy = hyz or hyy. Moreover, none of the breiding cocfficients vanish.

Proof. By comparing exponents, we must have, with z = 25/ 23,

~{ma+ —
(@3 ()80, (22)Ches Gr) = 25 T AT (1 2) T ol v (5.3.1.3)
5.3.1.
(813, (22)013, (20)0hes (n) = m:_:é e g (1 17 gz me),
respectively on the domains {z] < 1 and [z{ > 1, with
v o= %o ifh= ?E.fl“ Anmwv .JB(#SW
1-7 ifh= vaf.?w A»mmv \wv_.rffv, N
. (5.3.1.4)
pe = AQ *». k= hp, g1 (TeSP. hpi10))
B H k= hp, gt (resp hporg)-
Moreover, by analytic continuation,
(1- )™ = emiTa g (1- .Wvl)s.a {5.3.1.5)
T

on 0 < arg(z) < 2r. The first assertion of the Proposition follows from the connection

formula (5.3.9), at least in the case when there are 2 channels. When there is a single

channel, we need to check that the 4-point functions analytically continue to each other.

This follows from the vanishing of an appropriate entry in the connection matrix Pa, 5,7)-

We now check this, and prove the second assertion of the Proposition. Wa do this for
= hy 1; the other case is directly analogous.

We deduce the necessary and sufficient conditions for there to be a single channel. If
(84, (20)60 (23080, (z)8h2o(21)- (5.3.1.6)

is a 4-point function with hy = hy 2, then h € (hpyogrs Br2) N {Bpy gy fipg g0 Recall that
Bpg = hm—pmt1-g- FOI each choice of the (pi, i), precisely one of two situations obtains:
either py+patps €22+ 1and qu+ga+qs € 2Z: 0t py+ps+ps and 1 +gs+ga € TR+ 1+22
Replacing any one of the pairs (pi,qi) by (m—pi,m +1 - ¢i} moves us between the two
situations. So we can choose the (pi» @) such that the former situation holds. With this

convention, there is a single channel if and only if

g1 + 1= _Qu — Q»_ +1 or - 1= aﬁﬁﬁu + g¢ = w, M?Z + Pv -~ gy — g4 va Awmwﬂv
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if and only if one of the following mutually exclusive conditions {since 1 £ ¢; € m) holds:

#
<

Q+a-u

il
o

G+u-g
Bru—q
qtaty

(5.3.1.8)

it
=)

2m+ 2.

f

But it is straightforward to check that

@€l & it -g=0

BEZ & qitgatg=2m+2
‘ (5.3.1.9)
a-7€Z % i+ gu~qa=0

B-9€Z & g3+g-—q =0

By the remarks following {5.3.10), it follows that the connection matrix Pla,f,7) has a
single vanishing entry when there is 2 single channel; and no vanishing entries otherwise,
This proves the second assertion for the 2-channel case. Moreover, when there is & single
channel, the vanishing entry is by inspection the required one, so that the 4-point functions
are analytic continuations of each other. In)

§.4.. Braiding relations of arbitrary primary fields. In principle, arbitrary 4-point
functions can be studied along the same lines as in § 5.3, allowing us to deduce the braiding
relations of arbitrary primary fields. As for Theorem 4.7.1, however, technical difficulties
mean that we seek an alternative method, Computing the braiding coefficients, i.e, the
connection problem for special classes of n** order (n > 3) Fuchsian equations with 3
singular points, is left to experts. We defer the proof of the following theorem to Chapter II1,

5.4,1. Theorem. The braiding relation

B2 (23)80% () = M Oh2(22)803, (23) Chahabala (5.4.1.1)
holds on 0 < arg(z) < 2r in the sense of analytic continuation.
5.5. Braiding relations of secondary fields. We have already noted that the braiding

relations of primary fields hold with insertions of T(z)’s in the 4-point functions. This
implies that secondary fields also satisfy braiding relations (with insertions), and that the
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Eﬁ&nm behaviour is wamﬂmaq as for the corrésponding wunmm:& primary fields. We claim
that; by g&ﬁa continuation in = = 23/ 23, ’

vﬁm, kuv&>>» _.ou M & %d. Navﬁz: £ rmvﬁ,&.yuruf A

wr
n
s
~——

on 0 < arg{z) < 2r, for all £ € Va,, 7 € Vi,. As always, this is understood in the sense of
gwsm matrix a_mEmEm with arbitrary vectors in Vi, and Vi,: and it.holds with insertions.

The proof is by induction and elementary.

6. Operator product expansions

8.0. Overview. The reduced 4-point functions

(Bh2n(22)83%, (22) Cry s G (6.0.1)

are, up to a factor, local solutions at z = 0 to a Fuchsian equation with singular points at

= 0,1 and oo (at Jeast when some h; = h; 5 or hyy). Other 4-point functions provide
local solutions at z = co. We have seen that the braiding relations of primary fields are
just the solutions to the connection problem from x = 0 to & = co. Operator product
expansions are the corresponding solutions to the connection problem from z = 0 to z = 1.
Remarkably, the two problems are equivalent, in a sense that will become apparent; this is

fusion-braiding duality.

6.1. Lemma. We have
o0

Gho(Gi )02 = xl.}m (6.1.1)

k=0

Proof. Let ¢ = ¢%; be a primary field, ¢ € Vi and consider ¥(z) = #((; z). A matrix
element {$(2)&, 5) is, up to a factor z~{F+ki=h} 2 Laurent polynomial in 2. Then

(B(z -l m) = 3 %1 ()¢, ), (6.12)
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when |z} > |w|. As formal series in z, w,

o m4n
(e g et ) = 3 30 S ()T (LT E )
m=0 n=0
- WMIV v (r T:,.@J ¥(z)L71€. 1) h
r=0 n=D Amwwv ’

1) ¥ H)E )

1t
A
}
;:
:2
=3
&
b‘

i
078
—
!
=
Z
5
%
E
—
@
=
t
-
=
=

where we have used the identity
d
ol L3 10}(2) = (L 92)) = L5, (6.1.4)

1t follows that the series (¥(z)e*F-1¢, 1) converges on |z{ > |w| to (e¥I=1u(z — w)E, ). -

Let h; = 0; then h; = hx and ($(z)¢, ) is a Laurent polynomial, and
($(2)0,m) = (e¥F=2y(z — )2, 1) (6.1.5)
on |2 > |w], hence for all (1w, ), hence for w = z. It follows that
¢((; 2)2 = et-ig. (6.1.6)
The lemma could of course have been proved directly using (3.1.2). 0

8.2. Proposition. Let & € Vi = Vi, i = 1,...,4, and k € (hy, hy) 0 (ha, hy). The
formal series

{ Bk n (805, (603 w)Eai ), &) ®21)

converges on |w| > |z| > 0 to a multivalued holomorphic function; and

A&H%mﬂ uwv&”wzﬁﬁ 2)61, &) = MH Flylohat (gx (833 he (€33 23 = 22)€23 22)60, &4 )
k

(6.2.2)
onfl—z|<lz|< 1, -7 <arg(z) <=, 2= 27/ 23, where
Flibahahs o Qn“h.;a =1 Chehshiks anﬁfo. (6.2.3)

S
¥
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Here (23 — 22)® is defined as the binomial expansion of 2§ (1 — £)°. We write (6.2.2) as

>Am, N&&;,Tﬁ n) = MU Fihahahs & Qtsﬁh 23— 22)05 22 ), (6.2.4)

k

the operator product ezpansion or fusion relation; and :Jhﬁfffv: is the corresponding

fusion matriz. We can think of (6.2.3) as a statement of “fusion-braiding duality™. The
following proof generalises some arguments of Goddard [{Go] from “meromorphic” conformal

field theories to the ones at hand with non-trivial braiding relations.

Proof. We shall assume that the £ are lowest energy vectors, & = (;; the proof is the
same in the general case because secondary fields satisfy analogous braiding relations. Then

(6.2.2) has the form

f(z) = MU N.me,fﬁf (1~ va» Q»AH - p“v (6.2.5)

k

where f and the g; are power series converging on the unit disc; and oy = hg + hy —h — k,
Bi = k — hy — hy. To prove (6.2.2) on |1 ~ 2z} < jz| < 1, =7 < arg(z) < 7, it suffices to

prove it on a line segment in this simply-connected domain. In the following, we take

nwnﬂp(fmwmtﬁmﬂ.rmf“ Nu”mvwi‘ m

<
[
<n

with small é, € > 0; then z = /23 lies in the required domain. The series

Amswlﬁ al23) ﬁ::?wvnf G} = MU ANBM& AEE v&wwu?wﬁf (i) (6.2.7)
m=0
and - N
P T T g (Pham)el, () o), G (6.2.8)

are equal, at least formally. However, since the 4-point function
(6524 (23)84% (z2)én! o(w)2, (4 (6.2.9)
converges on {z3] > {23 > |w| to a holomorphic function, it follows that
(er2a(za)bpd, (22)C1, Gu) = (€708 (a0 + w)eps, (22 + w)dh! (w2, (4} {6.2.10)

for sufficiently small |w|. Now we use the braiding relations to analytically continue the

right-hand-side in the auxiliary variable w, obtaining
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M Tkh AmlEhl_ i Th.v&xvnm 23+ F_v&rquNn + Evb, ﬁﬁ v
k

(6.2.11)
S ks (e7¥E g (W), (23 + w)el il ),
*

where

Tn = ChpbChano, (6:2.12)

More precisely, we analvtically continue in w along the line segment ¢ ef™ 0 <t < 1. Note

that 0 < arg{w/(z; + w)) < 2= along this path. At t =1, we obtain

M ren (€580 (= 20)p3, (28 — 22)Ca. G, (6.2.13)

k

where —z; = ¢ We put this in the required form: introduce homogeneous orthonormal

bases TA::V of Vi; its series expansion can be written as

M Tih MA uuwl& »Alnwv el VG :;A(u - 23)(2, t&v (6.2.14)
k

n

and is convergent on {z3] > |23 — 22| > 0. We claim that
(enl-gh (=) € Gy = gw.\:?n} 22)61y G4 Qw,.h“»o -1 (6.2.15)

Introduce another auxiliary variable y. For |y] sufficiently small, the left-hand-side is

(€ -unlﬁ (- —zp)eVEm1g8 o (e )12, ¢4 )

(6.2.16)
= (e 0k (5 — 7)o (s 909, G,
which has an analytic continuation in y to
(elrmloagh | (e 9)dRlo(y — 22)2, () Cht™®
(6.2.17)

= (elrmvil- :&:3? (), gye=tra=wlosg) e Q?E»o

More precisely, we continue in y along the line segment tef™ 0 <t < 1. On this path, we
have arg(y/(y — z2)) = 7; its end-point is €27'z;. At ¢ = 1, we obtain

(850, (€8s €201, G4) Chipk®

(6.2.18)
= (80, (e 22)00, o) O RO,

since

Q{:Z = emilhitE-hy} (6.2.19)

N . R . s teen b
This proves the  «lm. Hence the required series expansion 1s given i

POR ISR DI ANC SRt
k

O (O, -

s

n

where

wé (hshahy m;;f»o -1

Vihe

This is just the left-hand-side of {6.2. 2), written using homogeneous ortho
the V's. Finally, note that, since (F,

sum must converge separately.

:ri:?v; is an invertible matrix. each

sormal bases for

erm in the

0




Chapter 111
Coset construction of primary fields

We give a new construction and existence proof of the primary fields associated to the
discrete series representations by exploiting the coset construction of Goddard, Kent and
Olive [GKO]. This can be regarded, especially in view of the state-field correspondence, as
the natural counterpart of the result for representations. The construction makes manifest
certain properties of primary fields that are hard to establish, even mysterious, in the Verma
module approach. This should be unsurprising — unitarity for instance is manifest in one
approach but not the other — and illustrates a general truth about the Hermann Weyl
approach to representation theory, which aims to construct all the representations through
the decomposition of tensor products of some “simple™ ones. It requires that the simpler
theories be first understood, in particular those of their properties that are inherited by
sub-theories. In the case at hand, these comprise the positive energy representations of
the loop group LG, G = SU(2), and their primary fields. The corresponding conformal
field theory has been studied in detail by Tsuchiya and Kanie [TK]. Moreover, the L5U/(2)-
theory at level £ can in turn be realised as a sub-theory of the ¢-fold tensor product of a
free-field fermionic theory. Finally, we use our construction to prove Theorems 4.7.1 and
5.4.1 of Chapter 11 ‘

1. The loop group theory

Let G = §U(2) and g its Lie algebra. We briefly sketch the relevant results of the conformal
field theory associated to the positive energy representations of the loop group LG.

1.1. Positive energy representations of LG. The loop group LG = Q&af G),
endowed with the €™ topology and pointwise multiplication, is a topological group; it has
the structure of a regular infinite-dimensional Lie group modelled on the Fréchet space
Lg = C>(8', g) [Mi] [PS]. The group of diffeomorphistus of the circle acts on LG as
automorphisms, and we can form the semi-direct product LG % DiffS1. We identify G with

the subgroup of constant maps in LG.

5

A positive energy representation of LG is a continuous projective unitary representation
x: LG — PU{H)on a Hilbert space H that extends to a representation of LG xRotSY and
is positive energy as a representation of the rotation group. Then H7¥ is a representation

of the affine Kac-Moody algebra § = 3, .; 8¢ ® Ce™* @ C¢,
[Tm, ¥a] = (2, Ylman + Emtr(zy) dminss (1.1.1)
where z,, = z ® e™, and £ is a central element. To tlis is appended an element Lg,
Lo, zm] = —mzm, (1.1.2)

the (negative of the) natural grading operator, corresponding to the infinitesimal generator
of the rotation subgroup.

A representation ¢ : § — EndW constructed from a positive energy representation
of LG has the following properties (cf. § 1.2.1): (a) W is a lotally-finite graded vector
space, W = ¥ ,eg W(n), with W(n) =0 for n > 0 and W{0} # 0; (b) ¢ is a graded
homomorphism; (¢) The central element £ acts by scalar multiplication by some £ € R, the
level; (d) The representation is unitary, i.e. there is a contravariant inmer product on W,
Then the level € is a strictly positive integer, and W(0) 2 g-module, irreducible if W is
irreducible.

The irreducible representations of § that satisfy (a)~(d) are the unitary highest weight
representations. Here, we note that, given the vector space decomposition g = n. Hhdn,,
we have also § = m_ @ (@ my, where mx = nz B 2,57 0¢ @ Cen® and 1= h @ CL A
unitary highest weight module W is determined up to isomorphism by the highest weight
{¢, ), i.e. the level £ and the spin j that labels the g-module W{0). These have been

classified: at each level £ > 1, the unitary highest weight §-modules W, correspond to spin
Fo= 0,50, = (1.1.3)

Let g¢ = n_ ®§®Hny be the standard vector space decomposition, where ny (resp. n_)is the
Lie algebra of strictly super- {resp. infra-) diagonal matrices, and b = §)  ny the canonical
Borel subalgebra. Recall that, if U is an irreducible G-module, a primitive vector u € U/
(i.e. an eigenvector for b) is unique up to scalar multiplication. We choose unit vectors
5.2 € Wj (D) that are primitive for b; then they are primitive for & my. In particular, let
£2¢ = Co,¢, the vacuum vector at level £.

A positive energy representation H of LG is completely reducible. It is irreducible if

and only if H/*" is irreducible as a g-module. In this case, H /in 35 a unitary highest weight
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odule. . ..‘. . ,
module. Conversely, every unitary highest weight module of g integrates to a positive energy
representation of LG. )

A unitary highest weight representation W, extends to 2 representation of § x Wir by

the Segal-Sugawara construction

Na.. = .lﬂi‘ MU H me-n¥ n + MHM:RM_.*.: 1 AHH.S

i o n>1

where {z'} is a basis for g such that tr(z'z/) = —16;;. Then

MH:S N\L (m=-n)Lmyn+ ﬁmv Aa ~ M) bmin.0
{1.1.3)

mhi. HL = =N ZTmdin,
with central charge c({) = 3¢/(£+2). In particular, we have a canonical choice for Ly, given
. . . oy v e
by {1.1.4), with lowest eigenvalue j{j+ 1)/(£{+ 2). Moreover, an irreducible positive energy
o

representation of LG extends to a representation of LG Diff~§1!

1.2. The associated primary fields. The notion of primary fields associated to unitary
Emvmmﬂ weight representations of § is as for the Virasoro algebra. Let U be an mnmacnmz.m
unitary G-module. Then U, = Vi ,@U is a jointly continnous representation of LG, given
by pointwise multiplication, and therefore an ordinary representation of LG % Diff*57. The
subspace Q.?: of elements with finite Fourier series is an ordinary representation of § x Jir,
respectively at level £ = 0 and central charge ¢ = 0. Let Wy, W) be unitary highest weight
representations of @ at level £. A primary field is a linear map ¢ : W; ® G?a — W,
intertwining the action of § X Tir. If Wy, W) and U correspond to spins 73, j; and ja, gmﬂ',
g =hy —hy and A =1~ hs, where by = 5i(Ji + 1)/{{+ 2). We say that the primary mmE 3
has spin ji.
For u € U, we write &{u; n) = ¢{u @ e™?) and
du; 2) = M S n)z A thimhs) (1.2.1)
nel
We have the covariance relations
[Zm, o(u; 2)] = s é{zy; 2

HN\:.: ﬁ?ﬁ nz = H:.TSIm\QAﬁ v + Fu As + u.v SA.RM nv AHMMV

These are not all i sin vi
all independent; in view of the Segal-Sngawara construction, the commutators

. P £ . . .
Ly, (v 2)}, m # 0, are determined by the other relations. These covariance relations

I Coset

essentially characterise the primary field &. It is specified up to a scalar multiple by the

level £ and the ordered griplet of spins {3, J1, 72). The primary fi

unitary highest weight representations of § have been classified {TK}. The primary field

p: Wi ® omu, — W, exists at level £ if and only if

olds associated to the

=1.2,% <1 (1.2.3)

M(m

Homg(U;, & L5, Up1=G Ji £
W), Uj, & Wi(0) and Uy, = I/ as G-modules. This condition is invariant
ns ji. At a fixed level £, i L= W5, (03, we denote by ¢; u,
NW\_: - W

.o
where Uj, &

under the permutation of the spi

the normalised form of a primary field ¢: W, ® satisfving

2

(1.

ABSE n.u.uvﬁ.h.i Duv =

Let U be an irreducible unitary G-module, 7= its dual space, and wr> u” = (., 8 tlie
1 y

canonical conjugate-linear isomorphism of G-modules. Together with complex conjugation

intertwining the action

on C*®(S?), we obtain 2 conjugate-linear map * ! Usyp — UN,
of LG x Diffi*St, If ¢: Wi @ OT: — W, is the primary field given above, we have the

conjugate primary field ¢% :
Since G = SU(2), the conjugate G- module U~ is isomorphic to U
)): then we can identify [/ with I in such

@qy? — Wy, given by (& g Vea, 6 = (62, lg)6a)-

isomotphism I — U

is unique up to a scalar multiple. Let U = W;,(0)

ja s gda
a way that Jadi T Thix

spin J at level £ generates

1.3. The state-field correspondence. A primary field ¢ wi
nitary highest weight module Wy with highest weight (£,

2 g-inodule isomorphic 1o the n

The g-action is given by

it = |30 (T ) (2 et = 1)) w90 S (7)o atn) s

r=0 r=0

and the Dir-action is as before. We write ¥(z) = (& 2} [or that slement corresponding to

the vector £ € Wi, so that {Fp}(2) = dzms z).

ations and operator product expansions. The correlation func-

by Tsuchiva and Kanie [TKI.
1 = o .P:

1.4. Braiding rel

tions and braiding relations have been studied in some detail

1. Let ¢; = @u = 1,...,7n, be primary

.+&J

with Iy =

Tix a level £ >

n-point function is a formal series

{gal -1 2n) (5 0L
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regarded as a form on W;, (0)®---® W;,(0). It is a formal solution to an integrable Pfaffian
system of partial differential equations, the Knizhnik-Zamolodchikov equations, at a regular
singular point; and converge on {z,] > -+ > |z ).

The local solutions of the KZ equations are spanned by the n-point functions, and we

have the braiding relations

&.J.nhu. I A. ..
45056 3)eiy, (m z) = M GGai(m 22)803, (& =) Cliiriai, (1.4.2)

vali = i
alid on 0 < arg(z) < 27,z = 23/23, in the sense of analytic continuation, and in the sense
1

of taking matrix elements. By explicit calculation, the braiding matrix AQ&_.W Feds }i;, has no
vanishing entries. ? "
The operator product expansion
Qu.,u. 2 Q\J c 20} = Jedaizdy 1 <5
36 20075, (m 22) = 37 FYBI gl (6l (65 2 = 2)m; 1) (14.3)

i
is valid on |1 ~ z| < |z] < 1,z = 2,/23, in the sense of taking matrix elements, with
)

N;..,..mﬁ.».: = OF0 =1 ~Sdsitde o da5i0
; = ! ora, jiads
J Al ij Q:.: : (1.4.4)

This is proved in the same way as Proposition 6.2.

2. Coset construction of discrete serjes representations

2.1. Coset construction of discrete series representations. The construction by
Goddard, Kent and Olive [GKO]J of the discrete series representations proceeds as follows.

(1) The tensor product Wy ® W, of unitary highest weight f-modules, respectively at
levels £; and £y, is naturally 2 §-module satisfying the conditions (a)-{d) of § 1.1, at level
£ + £5. (i) By the Segal-Sugawara construction, each W; is also a Wir-module mwﬁmmgu
the conditions (a)-(d) of § 1.2.1, at central charge ¢; = 34;/{£; + 2). Therefore, the ﬂmumow
product W, ® W, is naturally a Dir-module satisfying the same conditions, at nmms,& charge
e1+ ¢y let Ly, m € Z, be the corresponding Virasoro algebra elements. (iif) The Segal-
Sugawara construction for the level £y + £ representation of & makes the tensor Eomaann
space a representation of Dir at central charge (€ +£)/(4; + Lo + 2); let Ky, meZ, be
the corresponding Virasoro algebra elements. (iv) The deficit

34 + 34 _ wANu +huv
G+2 642 L4642

(2.1.1)
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is the central charge of the “coset” Wit-action, corresponding to the Virasoro algebra el-
ements Tpn = Lm — Ayn, m € Z. These commute with the f-action, and therefore also
with the Wir-action given by the Ax’s. The inner product on the tensor product space is
contravariant with respect to the natural § and Dir actions, and therefore also the coset Wic
action. (v) The tensor product space Wi © Wy therefore supports commuting actions of §
and ir, at level £; + £, and central charge (2.1.1) respectively. As a f-module, ¥, & W,
is completely reducible to a direct sum of (irreducible) unitary highest weight modules at

level €4 + £,. There are only a finite number of these, and we have
WieW, = 5 W;0 X, (2.1.2)
J

where the W; are distinct unitary highest weight g-modules at Jevel £; + £3, and the X;
are multiplicity spaces. Then each X is a Dir-module at central charge (2.1.1), satisfying
(a)~(d) of § 1.2.1, and therefore completely reducible to a (possibly infinite) direct sum of
unitary highest weight Uir-modules. (vi) The central charge (2.1.1) is strictly less than one
if and only if one of the £ is equal to one. So let &; = £ and £; = 1. Then each X; is a

finite direct sum of discrete series representations.

2.2. Theorem (Goddard-Kent-Olive). We have

«‘Sk ® Swn; E M S\,.TTH ® v.:ﬁﬁ.&f se(d). hm.m.:
J

where c(£) = 1~ 6/(£+ 2)(£+ 3), and the sum is over j = 0, },..., &3, with 5 + {+¢ € Z.

1t is easy to check that every discrete series representation can be coustructed in this way.

3. Coset coustruction of discrete series primary fields

In the following, let { (resp. {3, 3,...) denote the highest weight (I, {} corresponding to
spin | at level £. Let W, be the unitary highest weight g-module with highest weight (£
let &m ;, be a normalised primary field at level £; and Jet hy = I{{+ 1)/({ + 2). Similarly,
we use the indices ¢, €1, £2,..., at level 1; and j, 7y, J2,..., at level £+ 1. We also let
hpq = hair1,2j41, corresponding to the central charge (f) = 1~ 6/(2+ 2)(£+ 3); and let
V4, be the discrete series representation with highest weight (h, .. ¢(£)}. When there is

no confusion, we also let h; = fy, g,
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3.1. Coset construction for primary fields. Using the state-field correspondence, we
can replace f-modules Wi, and Wy, by the isomorphic j-modules generated by primary

fields s: L z) and @52 :A .; z). Corresponding to @ € Wi, ® W,,, we have

uaﬁm® m nV = ¢ rﬁm v ? :Ad. ) Aw‘w.:

This is a formal series whose coefficients are linear maps from Wy, & We, to W, & W,,.

The linear span of these elements is 2 §-module isomorphic to Wi, & W,,. To be sure, if
Lo& = {hi, + n(£)} £, then
¢l (62) = 9 el (&n) g b bnlerbhy —hiz ) (3.12)
nel
where the integral moding of each coefficient is its degree as a graded linear map Wi, — W,.
And if also Lon = {he, + n(n)} 7, then

YiEgma) = 3 s nOmm A=@K 7 gh (G m)@ ¢ (- m), (319)
mel

n€d
where A(I) = hyy + by, — by, Ale) = he, + hey ~ he,. Each of the tensor product spaces

Wy, & W, decomposes into irreducibles for the action of g x Tir,

W, W, = 3 Wi, 0W,, (3.14)

according to the GKO theorem. Let P;, be the projection onto the spin-j; summand. Then

V(i = 3. YR, (3.1.5)
J1.d2.33
where
(Y7, (63 2)60, &) = (Y(Pidas z) Py &, Pi6a) (3.1.6)

for £ € Wi, @ Wy, When necessary, we write explicitly

=v[h ]G

hee (3.1.7)
L2) = Y i e .
ux..muuuuA . »v - uu.»uu‘u Tu 1y es :MA " rv.
For u € Wj,(0), we define in addition
X} b 73 .
GA:“ Nv = WMQ»A:“ Nv = ;‘.u..wu‘» Tu iy ez nuwﬁﬁg v M\.wn&A:@ﬁvu. Nv, Awwwv

Y
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and

PR(wiz) = Y dh o)

Ja 0
where u ® (n, € W5, {0)® Vi, (0) C Wi, & W,. Then ¥( . ; z) consists of linear maps from
Wy, © Vi, into Wy, @ V. With the notation of § 2.1,

{20y} 3 2)=W(z .52 Kow =y P by
O (m >0

inp=0(m>0;  Kav=0(m>05  Tny

and
{Loyy}(.;2) = Mmm@i LA

As in the proof of Proposition I1.3.2, these relations imply that

zm, W5 2)] = 27 ¥(z .5 2) (3.1.124)
[Km, 9(.52)] = 2™ [Ko, ¥( . 2)]+ hyymeT e (3.1.128)
[Tr 95 2)] = 27 [To, 9( -5 2)] + ham 2™ ) (3.1.12¢)
and Tt
L /, . — 3+~ d P - | ™oy \ -
L, (-5 2)] = e P2y 4 by kst (m+ D™ 8) 3
forallm € Z.
3.2. Lemma. If ¥ does not vanish identically, then the primary fields QQ 5, end an;
extst and
P.2) = 82, (5 2)@ ki, (2) (3.2.1)

up to a non-zero scalar multiple.

Proof. Claim: the commutation relations (3.1.12) determine ¥ uniquely up to a scalar

multiple. Let {; € Vi (0) and u; € W; {0). The Lg-relation gives
{(P{ug; )1y Q@ CLue ® () = {ug, vy u2) P T A P B L (3.2.2)

where { ., .; .)is a G-invariant form. Since we can use (3.1.12) to evalnate (. ; z) on
arbitrary vectors, this proves the claim. In particular, ¥ vanishes identically if and only

it vanishes between the lowest energy subspaces. Suppose 1 # 0. Let

QA . Nv = N}J;r}:l‘.:u .R.h - Nv, Auwxv
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and & € Vi, i = 1,2, be arbitrary vectors. Since Ly = Ko + T,
Fri g el d
({Tm, a{uz; 2)) w1 ®&1, ¥28&) = +ha(m+1)z™ ) (a(ug) 2) R, 12 @86 ).

dz
(3.2.4)
It follows that the primary field &_.w a, (#) exdsts. Similarly, let

B(.iz) = hethThagy oy (3.2.3)
and 5; € W, i = 1,2, be arbitrary vectors. Then
, d
(B Bl 2 ©G, m8G) = {774 ha (157} (3(est 1 OG, M),
(3.2.6)

Together with {3.1.12a), this shows that the primary field ﬂww 5, (-1 z) exists. Finally, note
that the tensor product of primary fieids

Qw“ u.—A 358 &}u? () (3.2.7)

also satisfies (3.1.12), and therefore coincides with ${ . z) up to a scalar multiple. D

We note that if ¥(u; z) vanishes identically for all u € W;(0), then u\:‘:ﬁmw z) vanishes
identically for all € € W;,@Vh,. From the lemma, it is sufficient to consider those umu,urA 3 z)
for which (§1.72.7a) is an allowed vertex. For each pair of allowed vertices ({1,15,13) and

(51,42, 73), it is convenient to define branching coefficients

Js 2 €
Y, F . L (3.2.8)
by
; Iy € DN v Iy ey .5 .
il n )G =y h o eGiaedine 029

If 9 = 0, the coefficient is defined to be zero. We shall prove the following.

3.3, Theorem. WM:A . ; 2) does not vanish identically if

, 41
Homg(Uj, ® Uys Un) = G emlwﬁ 1,2,3), Msmmi (3:3.1)

{11, Coset construction of priniary fields 54

We note that these are precisely the necessary and sufficient conditions for (i, j2.J3) to
be an allowed vertex, so we can certainly replace “if” by “if and only #". The proof
will be given in stages, and incorporates an existence proof for the discrete series primary
fields. Convergence of correlation functions and braiding relations will also become clear.

In particular, we shall obtain a proof of Theorems 4.7.1 and 5.4.1 of Chapter II.

3.4. Convergence of n-point functions of discrete series primary fleids. Let

§®m €W, ®@ Vi, i=1,4; and let 2 ® uy € W,;(0) ® W;,(0). The 4-point function

3 . Jai 3 -
A.ﬂ. Mrt n‘nuwﬁﬂ SV.G Tu: nuﬂwAzu_Nv m~®d7m»®§v -
MU ; ; 1 . .
E A w»mu%: 12 £y nuwﬁﬁ .Ev BuuTu 1 e N»MAQ? vmu®dfma®a‘v fw\k»v

which, by the previous considerations, is equal to

ILFT I LA B
ity ty ey e L e

(3.4.2
(& ‘:? Svﬁs:?m“ z) €, &) Aﬂff?\vﬁ:f ). e )
converges on |w] > |z| > 0. Moreover, this convergence holds separately for each
{ ¢l (u w) .;:TS. 2) &1, ) (3.4.3)
in the sum. From the operator product expansion
o W6 ) = B FP Gl G s 949

it follows by projecting onto the irreducible G-submodules of W;(0) @ W;,(0) that

w
ey
ot

Z

L e e T b e i . \
MU u:L Tm&.,m o Mﬁﬁmu: {Fhonalw)enl, (). ma) &

{42 €4 £2 iy g5
converges on |w] > |zi, for each j'. Since fusion matrices are invertible, this implies that
Vil v s o (Gl () o ) (3.4)
Bil e e AL e haha hahy LA o

converges on |w] > {z|, for each j». It may, of course, simply vanish identically. The argu-
ments easily generalise to n-point functions to show that, provided that the corresponding
branching coefficients are non-zero, an n-point function of discrete series primary fields

converges on |z > -+ > |nf.
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3.5. Braiding relations of discrete series primary fields. The braiding relations

$; ! T: avc&ﬁ bow w?? uv

o 13 &4 €2 5l 28

. Ielisly preqceye; 3.5.1
IRl P (SR L el PYRA (U T Lo A A (3:5.1)
4 4
can be written on the left-hand-side as

M w.ruur I ’ “v\ua &ﬁ S M %, uuAﬁ. @.vﬁuwuuﬁﬁ? Nv ® %r.raAEVQv}ur.Auv Aw.w.wv

£ i3y €2 61

and on the right-band-side as

IRETYS et ese 73
M GBU:OM 7] Mwul
r

5

3 - { Fs
T. oegd wuu BM& i n.n;

3 (uas 28k, (i w) ® Bl (2)dhn, (w).  (353)
Fquating the two, we obtain the braiding relations

M r:— L T:u Tu - _ﬁmﬂ:b Fhona(W)BR2,(5) =

Iydg €4 22) 72 Mol e

LU e o

. i z , 3.54
MU QFNJP ﬁ.nn?nunu: Mﬁuu ﬁ | | H* M\.. i1 T\ iy ¢ n; ??ANVQ\" ha (w)- ( )
I

Here again we have projected onto the spin-j' submodules of W;{0) ® W;,(0) to single out

particular terms.

3.6. Lemma. Let ¢ be a permutation of {1.2,3}; then

v vl =0 & ¥, [ e e ] =0 (3:6.1)

J2 i1 lg 1y £2 2y Jet2y Jerry (23 le(1) €ot) €01y

Proof. It is easy to see that Theorem 3.3 holds when y =g =5 =0,ie

Cu ~uhuk O. mmmwv
v.:oruo SL T

This follows from the observation that
D106 2)2 ® $0(0 )21 =0 = £@7 . (383)
for @ n € Wi, ® We,, and that 2@y = 12 @ Ruy. In the braiding relation (3.5.4),
letlh =51 =0:
7 PN <) Pt Lol S

Jad ity 64 e 3311500
3 J £ hs z h w). Aw@Av
T.Nn. NMM\ To naw &»:vﬁ v&vrcﬁ v

Q“L 1y oﬁ.: £ 230 M\uu

£ry i
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1t follows immediately that
10 B il hoe ] X
uftf. iy £4 nuw =0 e w.:.;rkn.mg = 0. (3.6.5)
Moreover, by taking formal adjoints, we must also have that
j T w _ . ﬂ TR g _
u.: i Mr 1y €4 ey 0 = M.U.: I3y eaend 0. Au.m.mv

This proves the lemma.

3.7. Special cases. We prove Theorem 3.3 in the case: Ii+ 53 <1 When Iy = j3=0,

the result is obvious because

()@ () =1, ® 1, (3.7.1)

is just the identity. Consider the tensor product of primary fields

(9882, = 3 2 i (3.7.2)

Fam=iladke] F1.02

with I3, 3 = Qor & 5. The operator product expansion of the primary field 2, (

anles z) with
its conjugate is given by

(v 2003y, (wiza) = 57 Ffjisbt gl gl (o ), (3.7.3)
i

Since, for Iy = 0 or w,

islaty L0 <1 iyl medgls 1,0
m = ¢ C QF: .u.m Ov

is N il (3.7.4)
the leading term in (3.7.3) as 23 — 2z, — 0 is
m,%%:r ( Eu? D)u, 2) (23— 2p)™*H 1. (3.7.5)

The same considerations apply to the operator product expansion of 52 e {5 2) with its

conjugate. It follows that (3.7.2) cannot vanish identically on any vector in W, L, & W,

M A\Cu Ji o

.:.-.5

), DOT
can the linear combination

L]
~—
o~
<
-3
(=2}

for each 73. Hence for each fixed jj, J1, there exists some j; such that ¥ (o 2) #0.
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Let (I3,73) = @JS. By (3.3.1), j2 = 4, only, so the Theorem necessarily holds in
this case. Now let (l3,73) = (0.4). By (3.3.1), with a fixed ji, j» can take either a single
value or a pair of values in the sum, and it is sufficient to consider the latter case. Then
w £h<y fand jy = je = |j1 % .: We shall assume that one of the pair fw»:A S
«ﬂEmvmm identically PE.H obtain a contradiction. So let ew i = 0in (3.7.2); we obtain

oedn, (9 = )02 = aeh (ineela ) @)

on Wj, ® Vi, for some non-zero scalar A, where hy = hy, . . Left-multiply this by its

conjugate to obtain

.N: @&Sunﬁ.« v&nuDA.. _\/_ 3y+m.umvﬁw A

J+ s

w) ® 817, ()63, () (3.7.8)

on Wj, ® Vi,. Now analytically continue to |w| > |z|. On the left-hand-side, we obtain

I, ¢ €y auA S w) Mw DA -3 2) Q«nwuuuuuonu (3.7.9)
which, by (3.7.8), is
Ay £ E383E &
_\/_» ﬁ& ?A o evar :A -12) @ QENLS e”ww: (z) Caapaee, (3.7.10)
On the right-hand-side, we obtain
RS &.ﬂx -3 Eﬁm_ﬁ vqwm brle -, (3.7.11)
J

where the factor {---} is irrelevant in the following. Note that we do not need to know
a braiding relation for the discrete series primary fields to obtain this factor; the required
analytic continuation exists anyway because it exists for the left-hand-side and for the other

factor. The sum is over j = j4, and

cidth uo. (3.7.12)

We claim that (3.7.10) and (3.7.11) are not equal. This would establish the required con-
tradiction. Left-muitiply each expression by

é) ;,(.i2)® 1y, (3.7.13)
and compare their respective behaviours as functions of z. Since

&wv 5 (ui HV&M (v w) = M Mn wf» eu i AQWW?“ £ - w)vi w), (3.7.14)
i

imary fields 57

L v -
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where the su.. > over =0, 1for j_;and j = 1 for j,, and since

FiY 29 (3.7.15)

we obtain different leading terms as  — w -~ 0. This proves the claim, and establishes the

Theorem when (I3, j3) = (0, Wv

3.8. The generating primary fields, In the following, we assume that the Theorem
holds for a fixed (I3, 73), i.e.

rJ3 Iy

Yl 7 e L # 0 (3.8.1)
for all possible 7, 7y, I3, ;. From § 3.7, this holds also for ({3,7;3) = S,Wv and @.S.
Moreover, by {3.6.2),

Y ~ ’ w # 0 (3.8.2)

HOeo

for all I, 7;. From § 3.4, if h = hy 3 or hy 1, the 4-point function
(8] 5, ()2, (2)0R10 ()02, Cay ) (3.8.3)
converges on |w] > |z| > 0. From § 3.5,

Xm\; P 4 TNU; B @ ey (w) Y, (2) =

iy £y €2 fa ) £2 63

ettt v L, Al e as
-
It follows that
S, (w)gh, (2 M BN (2)bais () Gt b (3.8.5)
hyhgihahg

and, for each value of h;, Q:;& vanishes if and only if it vanishes for all values of A'.
It therefore cannot vanish, since the 4-point functions corresponding to different values of

hq or A" are manifestly linearly independent. Similarly, we have

DIRZFS I N B Ko R O LD

g1y €4 €7 ey 264
J2
shoeypfh o lyb (o 4 w
coden v b VLD A ee@elne). @ss)
It foliows that
A h hio chehy ahshy - -
Srm (IR () = D B ()bl (0) Oy 7™, (3.87)
=
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and the braiding coefficients likewise cannot vanish. By Lemma 3.6, we also have

Smn, (2)8310(2) = Bhiy, (2)h3g(w) CRAIMC. (3.8.8)

It is now straightforward to see that we have sufficient data to use the proof of Proposi-
tion I1.6.2 to obtain the operator product expansion
Aok hyhy Jh!
S (WSR2, (1) = D Fasi b 6l (b, (w0 ~ 2)hsi = (3.8.9)
Iy

for h = Ay or hy,, with
Fpahiot 2 g, (3.8.10)

3.8. Proof of Theorem 3.3. The proof of Theorem 3.3 now proceeds by induction on
I3 + ja. In the following, we assume that the Theorem holds for a fixed (I3, j3), i.e.

2l o)

J2 Ig 2 1y

hiN
=]

(3.9.1)

for all possible jy, ji, Iz, I1. We show that it holds also for (Is + ,73) 2nd (l3,75 % b
whenever these cases are defined.
We shall be considering the operator product expansion of

R (SR T B (O (3.9.2)

I ly 24 22 il ea oy

when (I,7) = (%,0) and (0, ). Since

]

M ::.,: e: :Aew :Am< w— Nv mz
v (3.9.3)

'
M¢ nu?\“ .Ev Mw 3 Adw Nv Nn.nn..mn»nun» M.S A&n. ~uA~\m w— Nv v Nv,

&, (6 w)oL (15 2

i

the terms of the operator product expansion of (3.9.2) are indexed by a spin I’ and an

integer n 2 0, and given by

.mur:u: &.Jw‘uuunua_ AE - bvt:\.:_ RESSEREYEN W +hiy+hs} v\%

P (G AR

Ll ooy

for some £v . € Wy ® Wy, an Ly-eigenvector with eigenvalue hy + he + n. Moreover, the
vector £, n does not depend on I, £;, for ¢ = 1,2,4. The dependence on these variables is
only through the fusion coefficients. In the cases of interest, i.e. (I,7) = (1,0) and (0,1),
there are at most two values that ! can take; and when there are two, the difference of the

corresponding values of Ay is non-integral.

111. Coset counstruction of primary fields

The first vee: (1, 3!?. . Then (3.9.2) is given by

\o w w \.3 M Nu 3 .w.u )u. .;.J w
M \ V:L: b e L Yoilnn el $aan(i2)@an(w)ei, (2) (3.9.3)
J2+2n

where h; = hp, .. We now use, from § 3.8, the operator product expansion
Jhoy hihayhah h . e
k(2] = DRI e @ (e =), (3.09)

where the sum is over b’ = hp o, € {ha1, h3) N {hy, hy); and also the fact that the fusion
coeflicients do not vanish. The coefficients of corresponding powers of w — z in (3.9.6) and

(3.9.4) can therefore be equated. In particular, for each u € W, (0),

IR T IR E N PR Pt D L RS BN TS

L J2 ja il €4 €2 Jads laly 5 £1 J2
Ja.
is equal to
N w?r m.Wnan_ 4 e
. F, Y
'y ees e ) G 7 (3.9.8)

for some £, € Wy @ W, It follows that the £, are the vectors in the lowest energy subspace
of the summand W;, ® Vi, in the decomposition of Wy @ W,.. Hence

)

Nﬁfu: H:wss Vi % e g -

iz ey EEIS RPN

% % ] gwt M L m&.f;f?

Il 24 &2 Sl ee i ¥ !

(3.9.9)

qu

Ja iz

up to a non-zero scalar factor that depends at most on j3, [ and I'. This proves the Theorem

for (I, ), and therefore for {{3 & §, j3) whenever defined.

The second case: {I,7) = (0,1). Then (3.9.2) is given by

o 4 Js 3 w RS LAY e AN A
M .:»LMJKU n.nuMM\EEMS: nun; .«.SA:?V«GW‘:A:evﬁbﬁv‘w“muﬂ }u Av
Jadaeh
(3.9.10)
‘We now use the operator product expansion
Jaj ; )
P} SA: .:.v&.:.:?. z2) = MU mn_rw 0 @, :TF luw=2)v; 2); (3.9.11)
and also, from § 3.8,
> Fhiiahern ga [ . .
S, (WBhsa (2) = 30 Ft ™M gl (07, (w = 2)0nyi 2) (39.12)

X
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where R = hy, o € (h13, ha) N (h1, hy); and the fact that the fusion coe...cients again do
not vanish. We play the same game of matching up coefficients of corresponding powers
of w~—zin (3.8.10) and (3.9.4). The situation is marginally more complicated than in
the previous case, because there are now two independent sums, over ;' and over j” i
hpyam+1. They range over the same values. Claim: the terms with 7' & 5" vanish. This
follows because

{hit+hethj,+hs—hp~ho}~{hio+hs—h"+ himy +hj by}

1 FG+ +1) = j7(5" + 1) (3.9.13)

1 2 - )
(3" = 1a)* ~ (&3 mv + 43

is an integer if and only if j* = j'. Moreover, they must vanish separately, since they

|

n

i

correspond to different values of A” + hj:. Hence

\w ﬁ cw M b M Nun .g Hc.wuurN..&L: i_i: A
M Yik Ly o4 6 Yih Ll e Rty (3.9.14)
Jz

vanishes when j” # j'. Since fusion matrices are invertible, it also follows that this cannot

vanish when j” = j'. Hence, for each u € W,

S v VAL B [ EE e (a2 0 8 (2),

4 2l &4 22 Izl ea ey
Jinde B
(3.9.13)
where b’ = hy, o, is equal to
Fw?: n.w:n_ 5 ia < .
T N vﬁ..: lo iy £ e (£u; 2) (3.9.16)

for some &, € W, @ W, It follows that the £, are the vectors in the lowest energy subspace

of the summand Wj @ V,, _, in the decomposition of Wi, ® W,. Hence

»3.

wF: N,n. w €38y M\

[l
FF Ja i al; £q 6y -

MHL % o} Mv\r H Iy MM%TC_N%.\“ZEF

J1da 113 £4 €2 Ja g Ll eay

(3.9.17)

Ja
up to a non-zero scalar factor that depends at most on js, [ and j'. This proves the

Theorem for (ls,5°), and therefore for (/3,7 % 1) when this is defined.

3.10. Remarks. We have proved the existence of the discrete series primary fields by an
explicit construction analogous to the Goddard-Kent-Olive construction for discrete series
representations. We have also seen in § 3.4 and § 3.5 that the convergence of n-point
functions and braiding relations follow directly from the corresponding properties in the

loop group theory. In particular, we have proved Theorems 4.7.1 and 5.4.1 of Chapter 1.

Chapter IV
Localised fields and braiding relations

We apply the construction of discrete series primary fields in Chapter IiT 1o establish Soboles

inequalities for these operators. They extend a primary field o 7y

a jointly continuous linear map H® © 1, — Hi*. The smeared prima

densely-defined. closeable operator. At Jeast when ¢ has conformal

it has bounded closure and satisfies a stronger 17 nequality. We de
of localised fields by smearing with bump functions. and obtain the bra

satisly when they have disjoint support.

1. Sobolev and L? inequalities for discrete series primary fields

1.1. Inequalities for loop group primary felds. The discrete series
charge ety and the LS{7 (2} theory at level {1 occur as subtheories of 1
product of the LST'(2) theory at level 1. This in turs occurs as
theory at Jevel 1. which is realised as a free fermion theory. In this
CAR algebraof # = L*(S5'. %) acts on fermionic Fock space Fp
is the GNS representation corresponding to the pure state op. where

projection onto the non-positive modes of H; and LI:

unitary way on Fp by Bogoliubov automorphisms. In the L2t
smeared primary fields are the fermion fields, which are therefore ho and satisfv an
L7 inequality. Because all the primary fields of the LS{ (2} and discrete series theories can
be “constructed” from the fermion fields by taking tensor products and compressing. we can

| for the free

deduce the required Sobolev and L7 inequalities. We refer to W] [Wa

fermion theories built on H = L*(§. C), and for the LS

"} theories. It is sufficient for

our purposes to use the following result from the L51(2) theory:

spin-% at level 1. then the smeared field satisfies the L2-inequa

1.2. The GKO construction revisited. The GKQ cons

easily extends to a construction of the discrete series as positive energy rapresentations of

Dt ™5, Let ¢ = S0(2) and H = H; ;& Heq. As a tensor pro




IV. Localised fields and braiding relations 63

representations of LG at level £ and level 1, A is 2 positive energy representation at level

£+ 1. By complete reducibility,

H=HgK; - . (1.2.1)
J

where the H; are distinct irreducible positive energy representations of LG at level £ + 1,
and the A'; are multiplicity spaces. Consideration of the Lie algebra action on the finite

energy vectors H/i™ and comparison with (II1.2.2.1) gives

H = @ Hijt41 @ Hy, g0, (1.2.2)
j

at least as LG-modules. However, an irreducible positive energy representation of LG at
level £ supports a positive energy representation of Diff *5? with central charge 3£/(£ + 2)
that occurs by exponentiating the Segal-Sugawara operators (we can prove this by induction
on the level £ using the arguments to follow). Then H is a positive energy representation
of Diff*S? at central charge 3{/(f+ 2) + 1. Consideration of the corresponding Lie algebra
action shows that this action preserves each summand Hj 41 @ Ha, . or), and factors
as a tensor product of positive energv representations on Hj ¢4y and Hy, .6y These
follow from the relation Lm = K'm + T from § I11.2.1. and the fact that the image of the
exponential map on Diff *5? generates the group. So we can write 7 = &; 7; @ o; for the
positive energy representation = of Diffi*5? on H. Continuity of 7}, &; follows since x, and

hence 7; § ¢;, is continuous.

1.3. Proposition. Let ¢ be a discrete series primary field. There are 5,1 > 0 such_that

t (1.3.1)

(£l < K [I11LIE]

If ¢ has conformal dimension hy s or hya, then we have the stronger L?-inequality

(NI < K LFIIIEN, (1.3.2)

where |[7]]? = 3, | fal*

Proof. The proof is as for loop groups [Wa5). An LG primary field ¢ at level 1 is either

spin-0 and just the identity, or mEu.w and satisfies the L2-inequality

6l < K A1 Iel (13.3)
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From § I11.3.1, the £ + 1-fold tensor product of LG primary fields at level 1,

(1.3.4)

. @ ® . 5z)= (.1 5)® @Y
is a sum of terms of the form
do( .5 2)®¢:(2) & -+ & du(2), (1.3.5)

where ¢o( . ; £)is an LG primary field at level £+1, and ¢i(2) (1 = 1,...,{) a discrete series

primary field at central charge (). It is easy to check using Theorem 3.3 that every LG

primary field at level £+ 1 occurs as some ¢y by choosing the ¥y’s appropriately; and the

discrete series primary fields at central charge c{7) that can occur as some ¢; are precisely

those with conformal dimension &, .. ¢ = p, p£ 1. Fix an arbitrary integer 3 and let
B(m) = Y di(m) @@ Pe(ma), (1.3.6)

(m;)
where the sum is such that my + -+ 4+ my=m 4+ M.

When only one of the ;s is mvwsyw, we clearly have

£l (1.3.7)

(gl < B IA
In this case, the &p’'s that occur are precisely those with mﬁwm,wh and the discrete series
primary fields ¢; that occur are precisely those with conformal dimension Ay, and hy 0. We
claim that, for each i,

e el < K HATTEN {1.3.8)

More generally, suppose that k of the ¢;’s are mwmm‘w. If 5 is an Lg-eigenvector in the

{ 4+ 1-fold tensor product space, Loy = hn, then
i(my) ® - @ Ye(me)y = 0 (1.3.9)

if some m; > h. Since the operator norms [|1;(m;}]] are uniformly bounded,

lo(mall € K1+ h+ [m+ M~ {k~ DADS |iyi]

B (1.3.10)
< R @+ MDA+ R+ ImD) il
and therefore
HG(OEE < K+ MO+ 057l el (1.3.11)
for all £. We claim in this case that
Hod HEN £ ALk e (1.3.12)
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We shall be content to prove (1.3.8) and (1.3.12)

when { = £; the proofs are identical
for each ¢

leté=gw... ® £¢ in the relevant submodule, w

here the ¢; are lowest energy
vectors if i 3 {. Then, for an appropriate choice of the shift }

N 2 1137 frgotme do(mo)gs & @ Be(mp)e]l?
{m,)

[180(0)60l 1 - - - [|B-1 (0)€,—y |7 el )&

since the $i(mi)&i, 1 # £, with different m; are mutually orthogonal. Each of the factors
o 0)Ed]. i & L. is certainly non-zero. so the claims follow from (1.3.7) and (1.3.11) respec-
tively. This proves the second assertion of the Proposition; and
© has conformal dimension A

(1.3.13)

v

also the first assertion when
»g- 4 =p.pE 1. It also proves the corresponding results for
the LG primary fields at level £ 1.

foisan G primary field at level £. then we certain]

y have [l6(f)¢]] < & Sl 11ENe.
Let x(2) = o(g: 2) = Muamu x{n)z—n-3

» Where 5 is an Lo-eigenvector. We claim that

()l < B (1 + [n])* (1€ (1.3.14)

for some s, t > 0. The proof is by induction. Let (1.3.14) hold for (=) and consider

{Emx}(z) = 3 {2mr}(n) mmbm=a, (1.3.15)

Let £ be an Lo-eigenvector, Lo = h¢. Then

Ema ()l = 13 szv {1 2me X+ 7 = m)g 4 (2 1y14m-

r==0

wy&: - ﬂvHﬂmv :

s EM; va :ssix?flsxfmxwi__x?;%,m__
< lelli€llsy EM; \QZ Atim =D (14 o 4 r— mpyr+d
+m nsv (14— r)* (14 ry+t
rmo 1N T '

(1.3.16)
where we have used

lzmglle < Kla) (14 fm) o4 iy, 4. (1.3.17)
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1t is sufficent to consider m < 0. The terms in braces have oaly polynomial growth in
t is suffice <

and h. The first term is

< Cm (14 A (14 b+ [n)3tIm), (1.3.18)

and the second term is
< Con (14 h+In]) (14 &)FHHIT, (1.3.19)
for some constant (', depending on m. Hence
[Ha(mn} (I € Ko lz (0 + D™ (1] ppmpan, (1.3.20)

which proves the claim. |
Now let xi(2) = ¢(mii 2) = Loz xi{n) 27773, where the n.’s are Lo-eigenvectors,
Yow let xi{2) = ¢(mi 2) = Lrez

and consider their tensor product

() = () ®xfs) = 3 =2 Y xa(n - m) @ xa(m) (1-3.21)
xtz) = o ety

neld mel

We claim that

Ix{fell < KA e (1.3.22)

for some s, 1 > 0. We have

ar) &l € K +]a))*

for some s;, t; > 0, so that

Ixi(r) &l € K Q4+ a2 el .3:24)

Let € be an Lg-eigenvector in the tensor product space with eigenvalue #. Then

()l = 1Y xa(m) @ xa(n - m) 4l
. (1.3.25)
" ,
SE S (L4lm(i4n - m)|
m=n—{h
It follows that .
(N8 € BlAln+sast el rast, 3041 { 5)

which proves the claim.
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By (1.3.22) and the construction of discrete series primary fields in § I111.3, if

W(z) = 6f 5, (ui 2) @ 044, (=), (1.3.27)

then
o€l £ AL i€l {1.3.28)
for some s, ¢ > 0; and the same must hold for &N.:Q% cf. (1.3.13) above. 0

1.4. Corollary. The primary field o : H{™ & ﬁy\,wz - m«.w_.a extends 1o a continuous
linear operator A @ Vi, — H{®. For | € Vi, the smeared primary field ¢(f) is a
densely-defined, closeable operator. If o has conformal dimension hy, or hy y, then ¢(f) is

defined for square-integrable f and has bounded closure.

Proof. This is immediate. noting that o{f) C &~(f™)". 0

1.5. Intertwining property of primary fields. let ¢ : HF* @ V), — Hi® be a
discrete series primary field. and let £ € H°. Recall that Diff*S? and VectS? leave the

smooth vectors invariant. Let &, be the one-parameter subgroup of Diff 51 generated by

g € VectS. For f € 1 ,. let

fo = efule—d{8)-8) &5.‘.0&»? {1.5.1)

Then

et g emog = a0 {lid() o1+ o

af

= Tl.ﬁs £ (1.52)

Claim: the term in braces vanishes on H{°. By replacing f by f.i, it is sufficient to show
this at i = 0. Since the maps ¢ : HZ@®V),, — H5® and HP®VectS! — HX, E@g — L(g)E,
are jointly continuous, it is also sufficient to show this on the finite energy vectors mm:.,

and for f, g with finite Fourier series. But this is immediate, since

# Lt o) = oS + 09 + in ). (15.3)

Hence

et M) E= &Cﬁm&ii I3 (1.5.4)
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We think of this relation in the following way. Fach H; can be thought of {proof?) as
a continuous unitary representation of a central extension of Diff*St, determined by the
highest weight (hi, ¢). Let Z@& R — E — Diff*S? be the universal central extension of
Diff*S? [Seg]. Then (1.5.4) is the statement that ¢ : mwon ® Vi, — H intertwines £,
which acts on each H; by factoring through the central extension, and on Vi, by factoring
through Diff *57.

2. Braiding relations of localised fields

2.1. Localised fields. We shall always mean by an interval 7 ¢ §} a connected subset
such that both I and I° = §\J have non-empty interiors. Let 5} = R /272 and identify
C=(S") with C§2(R), the 27-periodic smooth functions.

Let J C 5§ be an interval and C§°(5") the smooth functions with support in /. Let
7 C R be an interval such that m%ﬁ?.@ = J; it is defined modulo transiation by 2x. Then

we can identify C'§°(S?) with QWA%Y the smooth functions with support in F. With this
identification, if @ € R and f € C(5?), we also have g € Ce(81), defined by

9(8) = 7 f(9) {

i
—
Y

for 8 € I. Replacing I by its 2r-translate multiplies ¢ by 2 phase &7,

Let ¢: H{° ® V), — H5® be a primary field and f ¢ Q.,wuamﬂv, Define

) = dleTeyp) (2.1.2)

a localised field with support in the interval N (but we «mm,tv‘ mean Mv. The reason for
smearing primary fields in this way will be apparent when we consider the braiding relations
satisfied by localised fields with disjoint support. If we regard g = e~%? § a5 an element of
V3,4, then o € Diff*S! maps ¢ to

- ~1.. . -
hom e W0 =iy g o gt (

v
o
&

Ned

which is given by
R(O) = e {{uT) foyT ) (6) (2.0.4)
for 8 € ¥(J). Therefore, we can think of [ as transforming under the action of Vect§? as

an element of V) o, i.e. independent of x. Its transform under ¥ is not really defined unless

3 itself has support in 1, in which case f transforms as an element of Vip.
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We should think of the support of a localised field not as an interval 7 ¢ 5? but as
the subset J C R. Let the standard localised fields & 3 be primary fields ¢ smeared with
the smooth function e~**f, with f € CPR}, J =
¢ € Diff"57 maps jts support [ to w(f). I v(I) C 2xn+ [ or 2zn + J°, for some integer n.

Torfe. Conjugating by an element

then it makes sense to make a negative translation of 27n to recover a standard localised
field; this introduces a phase factor.
In the rest of this chapter. and often in the subsequent ones, we let J ¢ 5! be the open

I={f:0<8<r};and fe={F:

with this convention.

upper half-circle; 7 < 8 £ 2r). It is easy to see that.

el g(f)e o = §(for,);
aﬁ.hu @A.Qv mlﬁ.ho — nluﬂ..t Q.X.Q ° %wv,
where r(8) = § +t. We shall see later that the additional phase factor is quite important.

]

3

2.2, Proposition. Lef az; = ¢} 1h, @nd bji = &), be discrete series primary flelds: let

FeC(8?) and g € CH(5'). Then

axi(£) bi( M bia(g) il f) Cpsme Mot (2.2.1)
on ,m‘.,oo. where the coefficients are given by the braiding relation

i 2) byi(w) M b (1) ai(z) ».ﬂ:?? (2.2.2)

on 0 < arg(u/z) < 2r.

Proof. By continuity, it is sufficient to prove the equality (2.2.1) in the sense of taking
matrix elements with finite energy vectors. Moreover, since primary fields are intertwiners
for Wir, it is sufficient to consider lowest energy vectors. If I, /I is an increasing sequence
of open intervals with T, ¢ J\87 and UnJ, = I, then we can find f, € C2(5?) such that
Ja = Jin C*(5"). Hence it also suffices to take f with slightly shrunken support, say in
I, C §', corresponding to the interval (g, ¥ — £) C R, for some ¢ > 0, We have

(aus(£)0;00C Gy = MU hon {ar;(n) bii(~n)Giy G s (2.2.3)
n=0
where A, = f, g-n, 50 that
3%
h{#) = M ha ™ = .mm A F(t—8)g(t) di. (2.2.4)
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We write h = f+g. Then h € Qmwa:, the smooth functions vanishing to all orders at
e € §1, since f and g have disjoint support. Moreover, by the choice of f, the function A
has support in the interval J, C S corresponding to (£,27r — €) C R. From the previous

results on 4-point functions, we know that the power series

M?i bii(=n)Gi Gy 2™ = et The R R (b )Gl G (2.2.5)

n=0

converges on |z[ < 1, where x = w/z, and has an analytic continuation to a holomorphic

function F(z) on 0 < arg{z) < 27, given by the series
D Chietet zhethi=he wh R () an(=)(n Ge) =

Xt 3 (B aul =) G &=~ shhmd (3

n=0
when |z| > 1. It is clear that the function (r,8) — F{re'®) is continuous and bounded on
the rectangle 6 < 8 < 2w — 6 Ry < v € Ry, for all 6 > 0, Ry > Ry > 0. It follows that the
function (r,8) — h(8} F(re') is continuous and bounded on 0 < 8 < 27, R, < r < R,. By

Lebesgue dominated convergence,

i 5. 46 i 0. df N de
; iy 27 RO i) = e
Wﬁ A h{@) F(re vma \ (0) F(e™) o~ w@\m A(8) Fre'* )5 (220
The left-hand-side is
2 s
lim ™ aei(m) b =m)Gor G 7 [ mere (2.2.8)
r 4

nwl
and recovers (2.2.3); the right-hand-side is
- 2 . 48
MU Qm_.,h..f?, lim M (be{n)eu(—n)ge, G ) 177" \o. h(g) e~ Hntel® 501 (2.29)

™1

H n=0

where a = hj + hy — hi — by, With 0< 6 < 27,

2
hE) = [ e g -0y ) 52, (2210)
: o
which, with our conventions, is the statement that
{e7%%h} = {*F [} # {e7iefg). (2.2.11)

)
i
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Since

W?;;r (ba(r) ai(=n) G Ce) = (bl g)an(e™® £1C, Gy (22.12)

nw=l

it follows that
() bi(e) G Gr) = 3 Chbbh (b )au(e™ )G &) (22.13)
1

This completes the proof. O

The corresponding braiding relations when the upper half-circle 1 is replaced by an arbitrary
interval J is obtained simply by conjugating (2.2.1) with diffeornorphism group elements.

Moreover, any two intervals are diffeomorphic by a Mobius transformation. Having chosen

an interval J. we have then to decide on which interval of the real line to use to define the

localised field. just as we had to above. The braiding coefficients change accordingly. In

. - . Aeha hyh,
vﬁ.anaw?amv_m&sm I by I¢ in (2.2.1) above multiplies the braiding coefficient Q?.? 4

by a factor eri{Auth=hi=h}

Chapter V

Von Neumann algebras of
local diffeomorphism groups

We give 2 brief exposition of some results of Wassermann’s [Wa4] on the von Neumanu
algebras generated by local diffeomorphisiu groups acting on the discrete series representa-
tions. Together with other results, they imply the construction of quantum field theories
satisfying the axioms of Doplicher-Haag-Roberts theory. The method is by descent from
tensor products of the ZSU(2) theories to the discrete series theories, which are realised as
sub-theories by the GKO construction. A key tool is the Tomita-Takesaki-Connes theory

of modular eperators and Takesaki devissage.

1. Local diffeomorphism groups

1.1 Definitions. If 7 C $? is an interval, we define Diff ;57 to be the subgroup of dif-
feomorphisms with support in 7, i.e. the diffeomorphisms that are just the identity on the
complement of I; we call these local diffeomorphisms with support in J. We also define
Vect ;S to be the subspace of vector fields on the circle that vanish on 75, if 4 € §' is a fi-
nite subset, we define Diff* 57 to be the subgroup of diffeomorphisms that fix A to all orders,
i.e. the diffeomorphisms ¢ satisfying &(8) = 6; ¢'(6) = 1; and ¢! (#) = 0,n > 2, for all ¢
such that €' € 4. In particular, if A = 87, we can identify DIff % 8% with Diff; 5! x Diff . 57

1.2. Proposition. Let I1,..., I, be a covering of §* by open intervals. Then the local
subgroups Diff ;, §1,..., Diff; §* generate Diff*S1.

Proof. Let D be the subgroup generated by Diff;, §1,... Diff;, 5. Let J ¢ §' be an
interval and ¢ € Diff y§'. For v € Diff*§, we have yéyp~t ¢ Diff 45,81, By conjugating
¢ by elements of D, we can shrink the support until it lies in some f;: to see this, observe
that if U € V C [ are open intervals such that V € I, then ¢ and ¥ are diffeomorphic
by an element of Diff ;5. It follows that ¢ € D and Diff ;S ¢ D for every interval J. In
particular, D is independent of the choice of cover {I;}. One way to conclude the proof
would be to note that D is a normal subgroup of Diff *5?, which is known to be a simple

group (a theorem of Epstein, Herman and Thurston; see [Mi}).
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We give an elementary argument that does not invoke this result. For each ¢ € Diff*s1,
we can always find disjoint closed intervals I;, I; and a v € Diff*5? such that Y =¢onl,
and ¥ = Id on J;. To see this, take 4 to be an element of C°(R, R) satisfying ¢' > 0;
&z +27) = ¢(z)+ 2r; and 0 < &(0) < 2n. Let Iy = [0 €], with £ > 0 sufficiently small
that ¢{¢) < 27; and Jet [r = [a, b} with ¢(¢) < a < b < 2r. Then there is certainly a
¢ € C®(R.R)with ¢ = don Jy; ¥ =I1d on Jy; and ¥’ > 0, $(z + 27) = v(x) + 27. Hence
{If, 15} is an open cover of 51, with ¢ ¢ Difff; §1 and =Yg € Diffze5'. So ¢ € D and we
have D = Diff *5?, ]

2. Technical preliminaries

2.1. Proposition. Let 7 : Difi*§? — PU(H) be a positive energy representation and
1 ¢ 8! an open interval. Then

#(Diff1$1)" ¢ =(Diff ;. Y. (2.1.1)

Proof. We show that #(Diff;5) and #{Diff;c §7) commute, i.e. their representative ele-
méhts in U(H) commute (a “locality” property of the cocycle). They obviously commute
uptoa vrwmn,.mmnnw Diff;5* and Diff7.5? commiute. Let f € Vect; 5! and ¢ ¢ Vect 57,

From § 1.1.14, we have

€11 i LU (=it Lis) o gitocls, f) gis LA(S, () 1), (2.1.2)
where &,(1) is the one-parameter subgroup generated by g, and

r
Ao = g0 [ U7+ g ae (213)

Since f and g have disjoint supports, e(g, /) = 0 and Ad(¢, (1)) f = f. It follows that
(@) (¥) = #w(¥)x(#) when ¢ € G; and ¥ € G, where Gy is the closure of Gy, the
subgroup generated by exp{Vect;51) ¢ Diff 751, The Proposition follows if G; = Diff y§1;
cf. exp(VectS?) generates Diff *5t.

Let J C 5% be an open interval and J, / J 2 sequence of open intervals increasing
to J, with each J, C J. For each ¢ € Diff ;§!, we can find ¢, € Diff 5, 5? such that
dn — ¢ in Diffi*§?, since ¢ = Id on 87 to all orders. Hence it suffices to show that
Diff xS' ¢ Gy for intervals K ¢ & ¢ J. Using results of McDuff [Mc), we can show that

e

e e e
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Diffx§' ¢ G,. Cleatly, Diff x5 ¢ H, = Diff.J, the diffeomorphisms in Diff*J that have
compact support. H; is connected, since an element of Hy is isotopic to the identity by
an isotopy with the same or smaller support. Let N, be the normal subgroup of Diff *J
‘generated by exp(Vect.J), where Vect.J are the vector fields with compact support. Since

VectoJ C Vect;S?, we have N; C G, By Theorems 1.1 and 1.2 of [Mc],

(Hy D)Ny D [H; H)) = Hy, {2.1.4)
Hence Diff xS'C Hy = N;C G. ]
2.2. Theorem (Reeh-Schlieder). Let (H.x) = (Hu,e, ma,c) be a discrete series rep-

resentation, 2 = 2, € Hy , the vacuum vector, ¢ the primary field Bw? and I C §' an

interval. The set of vectors
K = {r(g)8(f): g € Difi;S", f € C(S)) (2.2.1)
is total in H™, for each integer n > 0

Proof.  The proof is identical to the one for local loop groups considered by Wassermann.
We clearly have A ¢ H* = Nnyo H". Let J € I be a sub-interval and & > 0 such that
r6(J) C I for rotations 15 with [§] < . Let {., . )n be the inner product on the Hilbert
space H™ (£.n)n = ({14 Lo)™E, (1 + Lo)™n). Let n e H® satisfy (A, 7}, = 0. Then

(Flru geran ) m{rgirn 3¢ for )0 nhe = 0 (2.2.2)
for g; € Diff 487, f € C$°(S1) and [1] < ¢. Setting d = Ly — A, this can be written as
({e"mlgi) e} - {en(gy e 09} eiod gy oy = 0. (2.2.3)"
Hence there exists 6; > 0 such that
F(sgy...y 80) = ?:Ri.s;..‘m«,iiﬁvm:a&b? 70 (2.2.4)

is zero when |s;{ < 6;, 1= 0,..,., k. Claim: F = 9. Fix a j and freeze the 5;, 1 # 7, at some

values with {s;| < 6;. Let

o]
G(e*) = Flsi,...,s0) = > €Tz P, ), (2.2.5)
me0
where ) )
z = a:»mim»v..A;Z,mim@tV
isjoyd isyd isod (2:2.5)
vo= wlg) e T (gi) e w{gy) et B £
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and P, is the projection onto the Ly-eigenspace with eigenvalue A+ m. Recall that Diff*5?
acts continuously on #7; let T,(z) be the adjoint of z € B(H") with respect to the jnner

product on H™, We have

3 Kz Pav, )l

]

M (P vy Prn Tu(2) 7)nl

< AM 1P ] V:M [P Tu(=) m] 2} ¥ (2.2.7)
= __t__n_m;zAHvd::.
It follows that the power series
Glz) = 3 2™ {2 Puv,n), (2.2.8

m20
is absolutely convergent when |z| < 1. But G(e*} = 0 when 18] < é;. Therefore z — G(z)
is a holomorphic function on the open unit disc, continuous on the closed unit disc, and
vanishes on an interval of the unit circle. By the Schwarz reflection principle and the identity
theorem, G(z) = 0. Thus F(sy,..., sp) = 0 when [si| < &, i=0.... F with & =
Repeating the arguments with different 5's, we find that F = 0. Therefore,

(7t garen ) mlrogirey, ) 4(foroy )2, n) = 0 (2.2.9)

for all t;, and g; € Diff ;8, f ¢ Q.woAm.J..dmmum Proposition 1.2, we conclude that

H

{(w(9)é.n)n =0 (2.2.10)

for all g € Diff*S? and some £ € F*.

Now n(Diff*5) € spans a subspace of #™ invariant under Diffi*S1 which, by irreducibil-
ity of #, is dense in H. Claim: a rotationally-invariant subspace of H” that is dense in #
is also dense in H™. Let &'™ be such a subspace; without loss of generality, we can assume
that it is closed in H". Observe that H™ is unitary as a representation of RotS!, Then
A is the direct sum of its Lo-eigenspaces and each Py K™ is a subspace of A, If neH "
and (K", ), = 0, then { P, A'™, 7)a =0, and thus { P, A", 7n) =0, for each m. Hence
(&A™, ) =0. Since K™ is dense in H; we have n = 0. It follows that K™ = g, .|

The proof applies verbatim if the single smeared primary field #(f), .\ € Cp A.m;v in the

Theorem is replaced by a chain of smeared primmary fields

Bx(fi)-- d1(N), Fi € CP(ST), (2.2.11)

mapping the vacuum sector into H%. From the results of Chapter IV, such a chain can
always be constructed using only the primary fields with conformal dimension hio and by a;

then (2.2.11) is a bounded operator.

V. Von Neumann algebras of local diffeornorphi

3. Von Neumann algebras generated by local diffeomorphism groups

We describe properties of the von Neumann algebras 7(Diff;57)” generated by local diffeo-
morphism groups acting on discrete series representations { #, r), These have been deduced
by Jones and Wassermann [JW] [Wal] [Wad], along with the corresponding results for lo-
cal loop groups acting on positive energy representations. The method is by descent from
larger but understood theories, uitimately tensor products of the free fermion theories, to
sub-theories. Here we describe the descent from tensor products of the LST7(2) theories to

the discrete series theories via the GKO construction.

3.1. Takesaki devissage. We briefly recall how the modular theories of the von Neu-
mann algebras Af; are related to that of the tensor product M1®M,; and also Takesaki’s
theorem relating the modular theory of a von Neumann algebra M to that of a subalgebra

N that is invariant under the modular automorphism group.

Let M; C B{H;) be a von Neumann algebra with a cyclic, separating vector §2,: and let
Jiy Al be the corresponding modular operators. Then (M, & M,) = M@ M) the vector
i @ £ is cyclic and separating for M, & M,; and the nOmewosmwzw modular operators
are given by J; @ J; and A{' @ Al (see [KaR2)).

We sketch Takesaki’s theorem [Ta] (see also [Su]). Let M ¢ B(H ) be a von Neumann
algebra with a cyclic, separating vector {2. Let Jy,, .D: be the corresponding modula
operators, and ¢; = Ad(AY;) the modular automorphism group. Let A" ¢ A be a von

Neumann subalgebra. The following are equivalent:

{i) There is a conditional expectation £: M — N that preserves the vector state
T (202, 12),ie (E(2)52,2) = (20, M forall z € M;

(i) o(N)C N foralit e R.

Suppose that (i) and (ii) hold. Then F77 = M7 if and only if N = M. Let P be
the projection onto Nf2. Then PMP = N P; the conditional expectation £ is unigue and
given by PzP = E(z}P, 2 € M. The representation of N on N is the GNS representation
corresponding to the vector state z ~ (242, 2). In particular, the restriction of N to N
is a von Neumann algebra isomorphic to N. Let Jy, A be the corresponding modular
operators, and a; = Ad(A%) the modular automorphism group. Then Jus. AY, respectively
restrict to Jy, bx‘ on N12; and o, restricts to the modular automorphism group o, on N,

ie. ofz)P=qzP), z€N.
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3.2. The loop group theory. We sketch some results from the L5U'(2) theory, together
with other relevant facts. Let G = SU7(2). We fix a level £ and let (H;. 7;) denote the
positive energy representation of LG with spin j. Let 7 C 5! be an interval. We are
concerned with the von Neumann algebras n;(L;G)", where L;G is the local loop group
consisting of elements g € LG with support in 1, i.e. g(z) = ¢, the unit in G, for all z € I°.

Yor each j, we have the inclusion

ﬂu.ANLQV: C w{L1GY. (3.2.1)

3.2.1. Geometric modular operators and Haag duality in the vacuum sector.
The vacuum vector §2 € Hp is cyclic and separating for the local loop group no(L;G)". The
corresponding modular operators J and ' are geometric in the following sense. When 7 is
the upper interval. they are given respectively by the flip ¢ : z — 7 and the one-parameter

group of Mébius transformations ¢ preserving 87 = {-1, 1}, i.e.
Al = U (3.2.1.1)

s.rmnm\m/‘.mnﬂmummbmnﬁmm%mwsa
#

.\m...CﬁE.N - m:.x.Col“

(3.2.1.2)
Jeithih) g o m..:n:_onv, ’

for g € Lg and h € VectS!. Since exp(Lp) and exp(VectS?) Mm@mnﬁéd. generate LG and
Diff *§!, we have in particular that

mo(LrG) = 7o(LiG)" (= Jrg(LsG)" V). (3.2.1.3)

This is known as Haag duality in the vacuum sector.

3.2.2. Quasiregularity and ergodicity. The representation t + A" of R on Hy is 2

direct sum of the trivial representation Cf? and a quasiregular representation.

A continuous unitary representation of R is quasiregular if it is a sub-representation
of a direct sum of regular representations L?(R)® ¢*, where R acts trivially on £2. mm.unm
L?(R) has no vectors that are fixed by R, the same holds for a quasiregular qmvummm.uawso?
The direct sum and the tensor product of quasiregular representations are also quasiregular.
The latter follows because, if & is an arbitrary continuous unitary representation of R, then

+ N N - - New x
the tensor product with the regular representation L*(R)® H is unitarilv equivalent to
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the representation L2(R)® Hyriy, where Hiviy is the same space as /| but with the trivial
action of R,

In particular, the only vector § € Hy satisfying AME = £ for all ¢ §s the vacuum
vector 2. Hence the modular automorphism group \»n.mb,:v

acts ergodically on mo (LG
This implies that mo(L;G)" is a Type III factor.

If M is a von Neumann algebra with a cyclic, separating vector, and corresponding

modular automorphism group oy, we say that the action of ¢, on M is ergodic if

M E (e e M oyz) = 2 for all = C (3.2.2.1)

Y o, acts ergodically, then M must be a Type I1I factor. The proof proceeds as follows:

since M7 D Z(M) = M n M, ergodicity of o, implies Z(M) = C, ie. M is a factor. If
M is a Type I or Type I factor, then the modular automorphism group o, is always inner,
and cannot therefore be ergodic, so M is Type IIL

3.2.3. Local equivalence. The restrictions iy, are unitarily equivalent representa-

tions of the local loop group L;G. In particular, the von
unitarily equivalent. Moreover, 75 (Diff 181) C mi(L,5)"
intertwine Diff ;5. More precisely, if U/, :

mean that

Neumann algebras T LG are
and the intertwiners for LG also

Hy — H;is a unitary intertwiner for LG, we

Sm.,;g = £itX(a) s

, . : ©(3.23)
Uj et o gitlin) U,
for g € L;g and A € Vect;$'. This implies that the von N

eumann algebras generated by
local loop groups ;G acting on a positiv

€ energy representation are all unitarily equivalent,
Using Haag duality, we see also that each is unitarily equivalent to its commutant,
3.2.4. Local factorisation and hyperfiniteness. If J;, J,

are intervals with disjoint
closures, then Lsus,G

= N.:Q X Lj,G. Local factorisation is the statement tha
representations wlr, ., ¢ and

hyperfiniteness of mo(L )"

t the
Tile, 6 ® 75lL,,6 are unitarily equivalent. This implies
by the following argument. If 7, 7 [ is

a sequence of open
intervals increasing to 7, then

mo(LiG)" = \/ mo(L;, G)". (3.2.4.1)

n

I In G In41, then Jy = Inoand Jy = T,.7° are open intervals with dis;

int closures, and
ao.hbﬁua and wo?\:o. & Q?;Q are unitarily equivalent. Since

70(Ly,G) @14 C B{Hy)®1d ¢ {Id ® ro(L,G)Y, (3.2.4.2)
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there is a Type I hyperfinite factor M,, such that
wo(L1.G)' C Mn C (L5, ,,G). (3.2.4.3)

It follows that wo{L;G)" = Vp Mn. which implies hyperfiniteness.

3.3. The discrete series theory. Consider # = ¢ & 7, 1. the tensor product of

projective unitary representations of LG » Diff *5?, and consider the GKO decomposition

H=H (CH,=H1€He (3:3.1)
;

where ¢ = ¢(£) and h = hy,, = hay1.2541. Then

@ 75 0+1{g) & Id

H (3.3.2)
@ ﬂs.,n.:A&v ® T, o(9)

J

i}

©(g)

1

=(o)

for g € LG and ¢ € Difi*5%, cf. § IV.1.2. Let T C §* be an interval. From § 3.2 above, we
know that the irreducible positive energy representations of LG at a fixed level restrict to

r:x»a:. equivalent representations of L;G x Diff 15!, Then we can define

. o = D rinlLexnin, s © 14, {3.3.3)
1
‘m projective unitary representation of L;G % Diff;§1; and
T = (P IdB s, clpim, 51 (3.3.4)
)
a projective unitary representation of Diff /57, defined by
r{¢) = o(¥)"s(¢), v € Difi;$". (3.3.5)
Let
M = =, (LiGY' @7, 1(L1G). (3.3.6)
For all 4, £, we have ﬂ».kAUmm.N.m; v: C Mu_k:.ém.vf 50 that
#(Diff;51)" C M;
o(Diff; SN ¢ =(L:G)" C M; (3.3.7)

r(Diff;51) C M,

where the latter inclusion follows from the former two and {(3.3.3).
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3.3.1. Geometric modular operators, quasiregularity and Haag duality. Con-
sider the case [ = ¢ = 0. Let J ¢ §? be the upper half of the circle. At each level ¢, the
vacuum vector 2; € Hy ¢ is cyclic and separating for the von Neumanun algebra 7o, (LG
the corresponding modular operators J,. AP are geometric; and the representation f ~ AY
of R on Hp ¢ is a direct sum of €2, and a quasiregular representation. It follows that
"Exo.1(L1G)"; the
corresponding modular operators are J = J; g J;, Al = A8 ® Al and therefore also

= 2 ® 1 is a cyclic and separating vector for M = 7o, (L5

geometric; and the representation { — A of R on Hy.t ® Ho y is also a direct sum of O
and a quasiregular representation.
Let ¥y = #(Diff;§1)" and N, = m(L;G)". Since A is a diffeomorphism group

element, the modular automorphism group Ad{A™) leaves each N invariant, and we can

apply Takesaki's theorem. Let P; be the projection onto N;f2. On N.12, J and A' restrict
to the modular operators for N;F;. Since 2 = 2¢43 ® 020, we have Ny {7 = 2441 ® Ho . and
Mol = Ho 01 ® 12, (using the Reeh-Schlieder theorem).

Clearly, A restricts to

Al @ AN = U g itlhs) (3.4.1.1)

on Hy ¢41®Hyp, .. where f € Vect§!? generates the one-parameter subgroup of Mébius trans.

formations that preserve 87 = {~1,1}. So Al is the modular operator for 7o, (Diff;.57)".
The representation t =+ A¥ of R on Hy,c is a direct sum of Cf2, and a quasiregular repre-
sentation, since it is a sub-representation of the representation ¢ = A on Hy ¢ ® Hp. g that
contains C2. 1t follows that the modular automorphism group on r(Diff; 1) correspond-
ing to the vector state z » {212, ), acts ergodically. Hence T(Diff ;1 5%)", or 7p. ADifF 517,

is a Type III factor.
Let J restrict to Jzp; ® 1d and Id ®J. on Hy 14y ® 2, and 001 ® Ho o respectively.

It is easy to see that
J o= T @ U, (3.3.1.2)

on the summand Hg ¢4 ® Hy . € H. We simply check this on the dense subspare
NN = 76 000 L1G) ey ® g, (Diff ;51 12, (3.3.1.3)

It follows that, on Ho 41 ® Hy o,

Jer1 70,041(9) Ty ® J. mo,o(9) J.

1

Jnl{g)J
m{epe) (3.3.1.4)

i

i

7o, e+1{cde) ® 7o, o(cde)
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for # € Diff*S?, and up to phases, whence
Je 7o, o(@) e = mg, (ede) (3.3.1.5)
up to a phase. Hence
m0,(Diff ;7)) = Jowo o(Difi;§1)" J. = =g (Diff . 51)", (3.3.1.8)

which is Haag duality in the vacuum sector Hg .

3.3.2. Local equivalence. Recall that the positive energy representations H; ¢ restrict
to unitarily equivalent representations of L;G % Diff ;5! for all (4. £). It follows that there is
aunitary map U : Hy (@ Ho,1 — H; QH, ., intertwining @«Qxbmm.?w_vaNNQme\w;
Claim: U also intertwines the representations = of Diff 181, (We should of course index the
representations z, ¢ and 7, ¢f. § 3.3 above, by the spins 1, £, but we can without confusion
omit them in the following.)
The map U obviously intertwines the representations x of L;G x Diff; 5. Hence, for
¢ € Diff;§7, we have
o) UV r(e)U = o(0) (o). (3.3.2.1)

%
50 that

RY

a(c)" {Ume(o) U} = r(8) {U"r(8) U} (3.3.2.2)
The left-hand-side r..Mm in ¢{L;G)", and the right-hand-side in the commutant. Since
o(L;G)" is a factor,

U r(e)U = 7(¢) {3.3.2.3)
up to a phase. In fact, since o{Diff ;181) € o{L;G)" and U intertwines o{L;G)", it must
also intertwine o(Diff 157); so the left-hand-side of (3.3.2.2) can only be the identity. Hence

V Ureftlih) = gitLih) (3.3.2.4)
for h € Vect; S, Hence the von Neumann algebras 7(Diff;57)" are all unitarity equivalent:
in particular, from § 3.3.1, they are Type 11 factors.

The commutant of a2 Type III factor is also 2 Type II factor; for Type III factors,
any two non-zero projections are equivalent. It follows that the sub-representations of 7
are unitarily equivalent to 7; and therefore that the von Neumann algebras x, (Diff;§1)"
are unitarily equivalent for all h. This holds for an arbitrary interval I C 5. By conju-
gating by suitable diffeomorphism group elements, we see that the von Neumann algebras
"h, o(Diff§1)" are unitarily equivalent for all & and intervals J. Using Haag duality, we

deduce also that they are unitarily equivalent to their commutants 7, (Diff; 51,

ficteadun oy

S

e

3

N
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3.3.3. Local factocisation and hyperfiniteness. Let Jy, Jy C §! be intervals with
disjoint closures. If {H, x) is a positive energy representation of LG. recall that we have
a unitary equivalence ib:ch = ibbm ® xLFuQ, ie. aunitarymap? : H — HQ H
that intertwines Ly os,G = Ly, G x L;,G. Since n(Diff; S?) ¢ n{L;G)", T is alsc an
intertwiner for Diff 5, §* x Diff 5, 7.

Let H = H;,® H,,; and %, o, 7 be as in § 3.3 above, where we let I O Jy, J;. Then
there is a unitary map I : H — H @ H intertwining (Ly,G x L;,G) x (1;G x L;,G),
and the corresponding _Oaﬁ,%m.mom_o%_.;m:;. In particular, T provides a unitary equiva-
lence oiz, , 6 & QF:Q ®0olL,,6. which therelore also intertwines the corresponding local
diffeomorphisms. Since 7(¢) = 7{¢)o{o)"” for all ¢ € Difi*S, T is also a unitary equiva-
lence ﬂ_ommrium, > ﬂ_oxa:mn ® ﬂ_omm:,ﬂ . This is the required local factorisation property.

Clearly, we can replace 7 by the unitarily equivalent subrepresentations 7, olpir, 61 to obtain

Thoelpifts, st F Faoclpin,, 51 © Ticloi,, 5 {3.3.3.1)

As for the von Neumann algebras generated by local loop groups, local factorisation implies
hyperfiniteness. We have only to note that if ¢ € Diff;§?, then we can find ¢, € Diff;, §1

such that ¢, — ¢ in Diff *S?. The other arguments are verbatim as for loop groups.

3.3.4. Duality. Let {H;, 7;) be the discrete series representations of Diff *S! at a fixed
central charge ¢. Let 7 C S? be an interval. The restrictions milnig, 51 are unitarily equiva-

lent, as are the restrictions 7ilpig,. 5:. Let
H=@H: o=
i

and P; : H — H; the corresponding projections. Then H is a continuous projective unitary
representation of Diff;§7 x Diffre §'. For each 4, let ¥; : mo(Diff ;1) — 7,{Diff ;§7)" be
{

Ipigy s o = m@ Tilpiftse 51 (3.3.4.1)

i §

o

the spatial isomorphism obtained from the unitary equivalence mlpiqr, s+ i, 5
The smeared primary flelds ¢(f) that are bounded and satisfy the L -inequality pro-
vide, for f with support in /%, a natural collection of bounded intertwiners for Diff; 5.
From Proposition 1V.1.3, such intertwiners can be obtained using the primary fields with
conformal dimension hy s and hy,, and it is sufficient for our purposes to restrict atten-
tion to these. This subset C of primary fields is generating in the sense that, for each pair
Hj, Hy, there is a chain ¢(f) = ¢1{/1) - da{fa) # 0, with ¢; € C, mapping H; into H,.
Let Aj C B(H) be the *-algebra generated by the smeared primary fields ¢(f), with
¢ € C and f € L3(S'). Each P A P; is a non-zero subspace of A normalised by
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Diff 7 §1. By the Reeh-Schlieder theorem,

{zp(9)2: 7€ P As Py, g € Diff 1 57} (3.3.4.2)

is total in H;. Let T € Ay’ If j 5 i, then P;T Pz =0for all z € P, Az Py, so that
P;T P, =0. Hence A;.' ¢ @; B(H;). In fact, we have the duality relation

A’ = o(Diff1SY)" = €h =:(Diff157)". (3.3.4.3)

1

The inclusion > is obvious. Let z = &;z; € Aj'; we show that z € @ 7i(Diff ;1 51)". Let
T € PcApPy. Then 2, T =T zp. But 04(y)T = Tyforally e no(Diff; §1)". By choosing
T to be unitary, it is clear that, in order to show z € o(Diff ;1 §1)" it is sufficient to show

that zg € wp(Diff;57)". That is. we are required to show that

APy € mo{Diff 1 51)”, (3.3.4.4)
Taking commutants in B{H,) and using Haag duality, this is, equivalently,
NE (P AL P 5 ro(Diff e 51)" & M. (3.3.4.3)

We m.?aw.mw. have N C M and we now want to show N = M.

w%,noaﬁmwﬁnm with diffeomorphism group elements, we see that it is sufficient to
consider the case when 7 is the upper or lower half of the circle. In this case, the modular
automorphism group o, on M is just conjugation by the M&bius transformations ¥y that fix
8T = {~1,1}. Hz = ¢, (fy)-- Bl fa), fi € L3.(8?), is a chain of smeared primary fields
in Py Ape Py, then oy(z) also lies in Py A Py, since

mol¥) il fi) ()" = Su(f) (3.3.4.6)

. and v preserves I and J°. Hence o N) C N and we can apply Takesaki’s theorem.

To show that N = M, it is sufficient to show that N7} = M2, i.e. that Ni? is dense
in Ho. Welet £ € (N2)* and show that £ = 0. We have .

(a1lf1) - dalfa)2,8) = 0 (3.3.4.7)

for all chains ¢;(fi) - Bnlfu) € PoApPy. To begin with, the f; have support in J°.
However, since the ¢;(f;) are bounded operators, following the proof of the Reeh-Schlieder

theorem, we can arbitrarily rotate the support of each f; and still preserve (3.3.4.7). By

e v
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taking a finite partition of unity on §*, we see that (3.3.4.7) holds for all f; € L*(87). We

now show that the vectors

Si(fi)-dalfa) 2, fi€ IMSY), (3.3.4.8)

are total in Hp.
In fact, their linear span contains the dense subspace of finite energy vectors. Let

¢ = ¢, with h = hyy (or hap). and & the linear span of the vectors

Y1) 0(gn) o (fn) d(gn) £2, {3.3.4.9)

where the f;, g; have finite Fourier series. Then 2 € K C mo:«. Recall that #™ is the

linear span of the vectors L., ---L_;, f2. Since

(h), h = e™(mhg+ig')

1

[Lm, ¥(9)]
Ll

(3.3.4.10)
0 (m>-1),

1

the subspace A is invariant under the s/(2, C) subalgebra spanned by Ly, Ly and L_y; and

is invariant under the full Virasoro algebra if and only if L., 2 € K for all m > 2. Since

(m=2)'Lopnf? = L™ L 502, {3.3.4.11)

]

it is sufficent to check that L_, 2 € K. Let y = 1 and f = ¢*¥; then {f){? = { and
() 0(@)2, L22) = 2(1+ R) ()21 # o {3.3.4.12)
Since the Lg-eigenspace of Ho with eigenvalue 2 is one-dimensional, it follows that

V) $()2 = Lo (3.3.4.13)

up to normalisation. Hence K = m‘o\:ﬁ E=0, (N2 =0and N = M.
wba\&u g d PLIE w\
3.3.5. Von Neumann density. Let 1 C S' be an interval, and 7y, I the intervals

obtained by omitting an interior point of /. Then

AT = ALV AL (3.3.5.1)
1 2

or, equivalently, A;' = Ay’ 1 Ay’ This follows because A; is generated by Ay and Ay,

To see this, just write

#(f) = o(f x1) + ¢(f x2), (3.3.5.2)
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where x; is the characteristic function of I;, when ¢ € C and f € LYS). Hence

o(Diff 1 1) = A,
= Ap'n A, (3.3.5.3)
= p(Diff;; $1)" (1 p(Diff 15 5*)".
In particular,
7o(Diff 1 57)" = =o(Dif ;1 §1)" n no(Diff 7 §7)". (3.3.5.4)

Taking commutants and using Haag duality, we have von Neumann density:

wo{Diff 1§7)" = wo(Diff;, §*)" v wo(Diff 1, 57)". (3.3.5.3)
Since the restrictions *i|pisr; 1 are unitarily equivalent, we have for all § that

={Diff;§)" = =y(Diff;, §1)" v *i(Diff , §1)" (3.3.5.6)

Von Neumann density has the following important corollary. Let A C 57 be a finite subset.
Then, for each i. the restrictions Filpigas: are irreducible and distinet (i.e. not unitarily

equivalent) representations of Diffi*57. To see this, it is sufficient to observe that
¥

7{Dif45'Y = C (3.3.5.7)

Let Ji,...,Jn C 5 be consecutive intervals obtained by omitting the points in 4. Let

L= JyUdiey, k=1....,n, with Jnt1 = J1. Then
7{Diff , S1)" = =y(Diff;, §*)" v =i Diff 5,,, S1)". (3.3.5.8)

Clearly, the open intervals J,\8I, cover 57, Noting Proposition 1.2, it follows that

V mi(Diffy, 51y

&

) ‘ \/ =i(Diff, §1)" (3.3.5.9)
v :

#;{Diff*51)".

1

7(DiffA 5 )"

]

]

The result follows since the x; are irreducible and distinct. In particular,

(x(Diff;S1)" v #,(Diff ;- 52 >y

it

mi(Diff 157) 0 7y(Diff pe S

1

it

C

It follows that the inclusion wi(Diff ;S1)" ¢ #,(Diff 5'Y is irreducible.

@.
!
i
1

=;(Diff*5?)’ (3.3.5.10)
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3.3.6. Remarks. From the above considerations,
Th,e{ DI 8Y)" C 7y (Diff 1 51 (3.3.6.1)

is an irreducible inclusion of hyperfinite Type III factors. In fact, the ergodicity of the

modular automorphism group implies here that we have Type il faciors [Col.

po
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Chapter VI
Connes fusion of discrete serjes representations

By restriction, a discrete series Tepresentation #, . can be regarded as a Tepresentation of
Diff 18 x Diff ;e 5 and therefore, by local equivalence and Haag duality, as an (M, M 1)-

bimodule, where M; = =o(Diff ;5 1) The discrete series representations remain irreducible

and distinct when so regarded, so that the basic objects of study remain the same. This ar-
tifice, however, provides us with additive {direct sums) and multiplicative (a tensor product

.operation) structures on the corresponding category of representations. The latter, Connes

Tusion, is a specialised form of a quite general relative tensor product on bimodules over
von Neumann algebras [Sa). More specifically, the category Bimodys of bimodules over
a Type III factor M is a C* monoidal category. Whea M = My, the discrete series rep-

resentations at a fixed central charge are the simaple objects of a semi-simple subcategory

Pos,, closed under the tensor product operation. The subcategory Pos, has considerable

more structure; in fact. it is a modular category [Tu). That is to say, a monoidal category
equipped with a braiding, a twist, and a compatible duality; together with some conditions
that ensure finite decompositions. A key ingredient is the construction, from localised fields,
of bounded intertwiners that satisfy braiding relations, following e general prescription due
to Wassermann [Wa2]. We also compute the representation zum‘ﬁmo&wpmm to Connes fusion

of the discrete series representations.

1. Direct sums of discrete series representations

1.1. Absence of naive direct sums. If Hisa positive energy representation of Diff *51,
then, by complete reducibility, H = @; H; ® Vi, where the H; are irreducible and distinct,
and the Vi are multiplicity spaces. But since the Lo-eigenvalues are integrally-spaced, the
corresponding highest weights A; can only differ by integers.

1.2. Direct sums of discrete serjes representations, We would like to define the
direct sum of arbitrary discrete series representations at a fixed central charge ¢. Clearly, this
cannot in general be a positive energy representation of Diff*S? in the usual sense. However,

since the discrete series representations remain irreducible and distinct when restricted to
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Difi*§%, for .nite subset A C 57, we can take the direct sum to be that of representations
of Diff* 57, at least if 4 has cardinality |A] > 2. Tt must be that the obstacle to taking naive
direct sums is the fact that the cocycles of the projective representations do not in general
coincide; so we should be able to think of a direct sum as a representation of a universal
central extension of Diff*§? [Seg]. This is difficult to prove but we can note the following.

Let (H;, 7;) be discrete series representations, not necessarily distinct, at a fixed central
charge ¢. Let 4 C ! be a finite subset with » > 2 points, and Ji,...,J, the open
intervals obtained by deleting these points. For each &, the restrictions wilpig,, 1 are
unitarily equivalent; it follows that there is a continuous projective unitary representation
¢ of Diffi*5! = xJ_; Diff;, 5" on H = @&, H;. If vis the representation of Dif¥S? on H
similarly constructed for the finite subset B C §1, [B] > 2, then p and v coincide when
restricted to Diff *“Z§1. Moreover, by von Newmann density, olpigave st = Ulpigavs 51 can
be re-extended to a representation of Diff 5% or DIF?S. In this sense, ¢ does no! depend

on the choice of the subset 4.

2. Intertwiners for local diffeomorphism groups

2.1. Principal intertwiners. Let (H;, x,) be the discrete series representations at a fixed

central charge ¢; and 7 C §! an interval. Let w

o
o

M;=mo(Diff 150 My = mo{Diff o §1)' = M, (2.1.1)

By local equivalence, the H; are unitarily equivalent M;-modules, as well as unitarily equiv-
alent Mjc-modules; moreover, these actions commute. We can identify M = M; with
M7?, the opposite algebra of M, via the map z ~ J = J, and regard the &, as irreducible
and distinct (My, M;)-bimodules. Let

%; = Homyy(Ho, H) = {T € B(Ho, Hy): Te = T, z € M) (2.1.2)

be the space of intertwiners for My from the vacuum sector Hy to H;, We call these the

principal intertwiners for M;. Similarly, let

i = Hompy, (Ho. Hi) = {T € B(Ho, Hi): Ty=yT, y€ My} A2

“¥(

(i
—
I
Y

Let Uip € X; be unitary. By Haag duality, we must have

% = Uo My, (21.4)
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Since the vacuum vector 2 is cyclic for M;, we can identify the linear space X; with the
dense subspace X;2 C H;. Observe that there is a right, as well as a left, action of M;ie on
the subspace X f T € X; and py, p2 € Mp, then 3, Ty, € %5

2.2, Other bounded intertwiners. More generally, the bounded intertwiners
Homoy, (Hi, H;) = Ujo My Usg”, (2.2.1)

if Uip € X; and Ujp € X; are unitary.

3. Construction of bounded intertwiners from localised fields

In the following, let (H;, %) be the discrete series representations at a fixed central charge c; -
and I ¢ 5 an interval. Let § = & Hy, regarded as an (M, M)-bimodule or, equivalently,
as a representation © = &; s..._ui&% of Diff ;5% x Diff ;5. Let P, : H — H; be the
corresponding projections onto the irreducible summands. We recall that

M = ﬂkomm.Tm;v: = B A F. (3.1)

Let ¥; : mp(Diff157)" — 7,(Diff ;5*)" be the spatial isomorphism corresponding to the

unitary equivalence Tolpif, & = wilpig,51. When there js no confusion, we also use the

same symbols ¥; when dealing with the complementary interval J¢.

3.1. Lemma. Let¢: H® ® Vi — H be a primary field, f € Ce(5?), end z = o(f)
the (closeable) smeared primary field. Then ¥ is offiliated to = (Diff 1 §1)' = Af'. The same
is true for any chain z = ¢,(f;)-- 0n(fn) of smeared primary fields localised in I.

Proof. Clearly, for all u € x(Diff e 5, uz =z on Hf. If vis a unitary in w{(Diff ;e 57,
there are unitaries v, in the unital #-algebra generated by #{Diff;. 51) such that v, — v
in the strong operator topology (unitary density theorem). And if ¢ € D(T), there are
€n € H® such that §; — fand z €, — T{ Then v, &, — vEand zv, £, = vrzfy — vTE,
whente v€ € D(F)and Tvf = vE£,ie. v"Fv = F. We note that the chain ¢1(f1) - én(fn)
is closeable since it is extended by the closed operator {@;(f3) - -d1(f7)}". 0

3.2. Preliminaries. Let f € CR{5Y and g € C#(5%). For each i. ;. let @5 and ¢
denote respectively the primary fields of conformal dimension hg and hy connecting the H;

sector to the H; sector (whenever they exist); and let

i = ulfh v = il {3.2.1)

Mhm \%WJ\Wﬂ =
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be the corresponding localised fields mapping H into HP®. Then Tj; is affiliated to Afl

€

and §;; to Af. By Proposition 1V.2.2, we have the braiding relations
Tij Y5 = M Yirzu Cij (3.2.1)
i

on Hf°, where

} @ ‘«w»- ¥
Cij = Cpipeih, (3.2.2)

More generally, and this is important, this relation holds with insertions,

(0ulg) 245950920} {95(ha) w5 9i(h)} = 3~ {Fulha) ya Du(ha)) {90(g) 20 9i(2)) Cij
. 1
(3.2.3)
on H®, for g1, g2 € wo(Diff e §*) and hy by € mo{Diff 1 51). Alm: replace the localised
fields by bounded intertwiners. Let k € C2{S1) and

2= (k) o (3.2.4)

denote another collection of localised fields, localised like z;; in the interval J°. In the fol-
lowing, the braiding relations we cousider also hold with insertions of local diffeomnorphisms;
for simplicity of notation, we usually do not write these down explicitly. Equivalently, we
can regard the z;;’s (resp. the 5;;’s) to be pre- or post-muitiplied by local diffeomorphisins
with support in ¢, i.e. of the form Yi{g1) 5 0ilgs) with g1, g2 € 7o(Diff,. ). Clearly, a

chain of localised fields with insertions is also closeable and satisfles Lemma 3.1.

3.3. Construction of unitary principal intertwiners. For ¢ > 0, let

ve = (75T +e]7h (3.3.1)

Since 7,5 §p is affiliated to M, »? and hence v, lie in M;. Let

Yo = iy wd.&w (3.3.2)
be the polar decomposition; so ujo is 2 partial isometry with initial space (ker §;5)* C Hy
and final space imy;o € H;. By properties of the functional calculus, ¥io Ve is bounded
and converges in the strong operator topology to ujo a5 £ — 0. Since Tjo ve Les in 94, so
does ujo. Consider the braiding relation

Jo

ERCA N
Lea ™5 fgmgugus 0g 3 mbnia
&

AN M m M N
DJ A/n.\ mg ﬁ
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on H .ﬂvo, where
Ohohyhy ~hoh,hyh,

pr = Cuipteh ohel ) (3.3.4)

We now show that there exists a unitary Ujo € 9; such that Ujg H* C D(zg 2pp) and

Tt Uy = Uy MU B 2] Th; (3.3.5)
¥

on H?®. Using Lemma 3.1, it would then follow that what is true for Ujs above is also true

for an arbitrary intertwiner in 9) j- We proceed by first replacing the localised field Yjo by

its phase u;g, which is then modified to make it unitary.

(a) letfe H?; then

e e € - ug ke

eI 7 A Mm NS 924 (336)
— U > ke €
P
as ¢ — 0. It follows that ug .mu? CD(z zp0) and
o T = U M B 2] Tk {3.3.7)
*
on H¥. .awz.m have an&nnm replaced y;o by its phase uj0 € Pj, in (3.3.3).
(b) QKBU we can replace ujo in the braiding relation (3.3.7) with
{(3.3.8)

wjip = M %.«.An:vuk‘ov: € Gu..
n

2 strong operator convergent sum, where a,, b, € M;: i.e. wig HP° C D25 z1) and

S T Wiy = Wy Ue Ty Tp: Aw.w.wv
0 0 Jo kj k)
k

on H. It is sufficient by linearity to prove this for wjo = ¥;(a)ujb, a, b € M. By
Lemma 3.1, we can certainly replace tjo by uj5b. So let g, be a sequence of elements in
the linear span of my(Diff;51), converging to @ € My in the strong operator topology. If

[ m&%, then ¥;(a, )¢ € H° and, since tjp is a bounded operator,
o Vi{an)€ — upvi(a),

1y T tyg Vi{aa} 6 = g di(an) M Bk zg; Tai €
%

(3.3.10)
~ uj5 95(a) MU TP IR
&

P b b

Sxs AR
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It follows that u,¢ 9;(a) H7 C Dizg z) and
HS.. b ls) :.«,m %.«AQV = :.N,m. %.M.AQV M P53y N»Cq Ty Aw.w.wwv
2

on H°. This proves the claim.

(¢) Repeat the arguments of Part (a) with {3.3.9) in place of (3.3.3) to replace win by
its phase v;5. Since g vjo is a projection in M, a Type III factor. there is a partjal
isometry v € M; such that ve~ = vigvi0 and vTe = 1, Following Part (b), replace 159

by the partial isometry Ujo = vjov satisfying UspUss = vjov,g, U Ujp = 1. Then Uq is

unitary if vjov,5 = 1, i.e, if im wio = H;.

(d) Wassermann [Wa2] has given a construction of & wjo {3.3.8) with dense image. Let
g = tjousy. Let {g1.92....} be a countable dense subgroup of the unitary group of M,
{p,p2....} an orthogonal family of projections in My, Dol = prbom: {m.v2,.. ) a family

of partia] isometries in M; such that tnt =1, v v, = p,, 5o that v, vy o= dum and

Wio = D 27" 0{gn) ujo v, (3.3.12)
n

a norm-convergent series. Here, we note that: the unitary group of M, is a closed su bgroup

of the separable metrisable unitary group U{Hy), and is therefore separable and metrisable,

50 has a countable dense sabgroup; M; is a Type I factor, so all its projections are

equivalent. Then

Wiows = ) 27 0(0,) g 9,(g.)". (3.2.13)
so that £ € (imwyp)t = ker wig if and only if P5(90) q95{gn)" € = 0 for all . Hernce

ker wyj = D ker ¥;(g.) g 9;(gn)" (3.3.14)
n

“and, if Q is the projection onto ker Wi, then @ = A Vi(gn) g U;{g.)" € 7 Diff e Sy,

Hence 9;(g,) Q ¥;{g.)" = Q for all n. Since the Y:(gn) are dense in the unitary group of
7;(Diff151)", we have Q ¢ {95(6:).95(g2), ...} = m;(DiT;51Y. Hence

Q € ©{Diff;§1Y n (Diff 81 = ¢ {3.3.15)

by irreducibility of the inclusion 7;(Diff ;) ¢ mi(Diff 1 §1Y. Since  # 1, Q=0
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3.4. Positivity property of braiding coefficients. From (3.3.5), for £ ¢ His,

J1E0 Uy £ = MU e llzes E1F 20, (3.4.1}
%

and this holds also for all f (in z4; = mtqvv with support in 7°. Since the u; are
independent of f and £, this suggests that each u; > 0. Note that the braiding matrices
depend on the conventions for smearing the primary fields, but the positivity property
#i 2 0, if it holds. does not: a braiding matrix thw.qff would only change by a factor

eeilitha=hs=he} 46 that p,, given by (3.3.4).1s an invariant combination.

3.4.1. Lemma. We necessarily have jy > 0.

Proof. Let a € mo(Diff;5") and b € =o(Diff;c5?). Let 2y = 2o in (3.3.3) and write

explicitly the insertion of local diffeomorphisms:

Uio Ty 01{b) Tip mwudn 9;(a) = M Hi Ty Pi(b) z; J;(a) (34.1.1)
H

on H¥, where a € ro(Diff;5) and b € #o(Diff ;. §1). Let ¢ ¢ H?* and write n = Uigé

¢j{e) = U5 ¥5(a) Ujo, an element in the unitary group of =o(Diff;§1)”. Then

Am..Ea %vams @.ﬂ.Anv 7, dv = M Hx kaﬁvv %»mnv H».M.m, Tk mv mwhuwv
k

By Lemma 3.1, #/(9;(a))" T p;(a) = Ty, 50 that

(8:(b) 91(0;(0)) Fio 0y Zio ) = MU B {0k(b) Dula) 245 €, 245 €). {3.4.1.3)
%

Let B be the unital +-algebra generated by iUE&w%J. The right-hand-side of (3.4.1.3)
is a linear functional on B, which we shall denote as B 3 b+ (b} = ok i 2x(b), where
wr(b) = (bzi; €, zx;€) is a vector state (up to normalisation) on . Then ¢ extends (and
we denote the extension by the same symbol) to a linear functional on the von Neumann
algebra B” = (g, nkgm&m“::. Since the representations (Hy, 74) are irreducible and
distinct, B” = &, B(H). Now, by the left-hand-side of (3.4.1.3), (b)) 2> 0 for all b € B.
Since ¢ is a linear combination of vector states, if b, € B converges to z € B” in the strong
operator topology, then »(z°z) = limp—.. (b78,). But B” coincides with the strong/weak
operator closure of B, so that ¢(z"z) > 0 for all z € @, B(H,), and in particular for

z € B(H,). It follows that each g4 > 0. O
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3.5. Construction of bounded intertwiners. The identity
UsoZig T Uy = Mt» Th5 T {3.5.1)
*

holds on H°. The left-hand-side is the restriction of the self-adjoint R = [’y Ty T Uy to

H; the right-hand-side is the restriction of the self-adjoint T ™ T, where T = > tw Ig;

is defined on H7 and closeable. Ideally. (3.5.1) extends to an operator equality

R=%=T"T (3.5.2)
This is the case if and only if the symmetric operator § = 30, 4, Ty Tk Is essentially
self-adjoint on H$, since a self-adjoint operator has no proper symmetric extension. Or,
equivalently, if and only if 1 + 5§ has dense image. Forif £ € D{E), then by density and
because § C R, there are §n € D(S) such that (14 5)¢, = (T+R)En — (14 R)£, whence
€n — & because (1 + R)™? is bounded. Hence £ € D(5) and we have R = 5. In particular,
and trivially, this is the case when the zi;'s are bounded operators. We are unable to prove

%W.m.mv. but we shall not need to use it either.

Suppose that {3.5.2) holds. For ¢ > 0. let u, = (Fofo+e)yte My, and 9{u,) =

Ujo ue TB. =T T+¢)"}. Then %;(u,) maps H; into \Ewd. For each &, D(T) ¢ DiTis),

the operators P, T{T T + &) % are bounded with norm <3 {forall ¢ > 0}, and coincides
X )

with u7 Tx; 9;(u. ). It follows that the strong operator limit *

s.0.lim &4 05(u,) ‘ (3.5.3)

w0
exists, but it clearly does not in general converge to the phase of Z,;. Note that the adjoint

of Ty; 9{u,) also converges, with

s.0.1im {Zy; 9;{u )} = {s.0. lim Ty i{u.)}. (3.5.4)

goml) £—0

3.6.1. The bounded case. We consider the case when the smeared primary flelds z,;
in the braiding relation (3.3.5) are bounded operators. In this case, and writing explicitly

the insertion of local diffeomorphisms,
20" Vi(b) ol = Ug MHE. ERE ROETY (3.5.1.1)
P

on H;, where b € mo(Diffc §?). By linearity and continuity, this holds in fact for all

b € My.. Now we can replace each zi;in (3.5.1.1) by a strong operator convergent sum
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3, Silba) zij 95(cn), where by, e, € My, We can also replace x5 by its phase, with a
corresponding modification of the z4;’s, in (3.5.1.1). To see this, note that we can certainly
replace zpp by zio uc, where u, = [0z + ¢]™F € Mye; and 24 by z4;9;(x,). By pre-
vious considerations, the strong operator limit, 25 ¢ — 0, of 745 95(u,) exists, with g u,
converging to the phase of z. Arguing as in § 3.3, it follows that we can replace zip by a
unitary, and hence an arbitrary element in X,.

We have therefore assigned to each ai € %; 2 collection {as; : H; — H;} of bounded

intertwiners for M, such that the braiding relations
2o (W) anbis = b5 > pien] Oaly) ax; (3.5.1.2)
&

are satisfied, for all bj0 € P; and y € M. The assignment g;p — {ax;} respects the left

and right actions of M on M/-intertwiners, i.e.
Yilm)aw ya — {Fely1) ax; 95(3)} (3.5.1.3)

for all 31,32 € Mjc. This is easy to see. The assigment is determined completely by
the assignment of a unitary element Vip — {V%;}, for we define that Vi y is mapped to

{Vs;9;(9)}, for each y € My.. Now, if 31 € My« we certainly have

I B

) (1) Vio = Vio (3.5.1.4)

for a unique y; € M. But

f

25" 9i(11) Vio Q.N.o.. Uiy M £k 25 Oelyr) Vi
Tk

(3.5.1.5).

]

Nal Vio %%@uv @«u.a- NN&O: M i N»Wmm\wu, .%uAm\uv. o<
&

It follows that

M.,UE:SGN:S:,,ré@w:@ i) = 0 (3.5.1.6)

forall £, 7 € Hy, and z;; a localised field with arbitrary insertions. But then, arguing as in

Lemma 3.4.1, this means that
9w ) Vig = Vi; 95(3), (3.5.1.7)

which proves the claim. We can regard the assigment ap {ax;}. which intertwines the

natural (M., My )-action, as the smeared analogue of the state-field correspondence.
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Similarly. set = = Zio, and replace it by the unitary Vio € 1. Then

o Tyl ends = b S peo] Fuly) ek {3.5.1.8)

k

for all bjo € B and agp, ap € X,. In particular,
¥i(oy ap) = M [P SN (3.5.1.9)

k

The braiding relation {3.5.1.8) is the basic result that we shall require to compute the

Connes fusion of discrete series representations; from Chapter IV, we know that it holds

when the highest weight h; is arbitrary, and Ay = hyg or hyg: and this is all that we need.

3.5.2. Remark. The methods of § 3.3 can likewise be applied to the braiding relation

T Ui Yo = M Tr Wil YRt T10 (3.5.
X

on H§°. where 2o and the yu's are as before, wy; = mf?& for some h &

Rihohe O phohohyh ‘.Z
“x = Q»{‘: Crog™ ™, (3.5.2.2)

provided that the smeared primary fields () are bounded operators. Using the same

techniques, we can replace =5 by a unitary element Vg € X;. Asin § 3.4, we can also show

that 74 > 0; however, since

Rihghe O _ ~Ohg hyha o
G e e (3.5.2.3)

we really have 74 = px > 0. Finally, arguing asin §3.5.1, we obtain an analogous assignment

bjp {bis} of M--intertwiners, satisfying

Bi(xi)biozy = {Di(z1) b i(22)} (3.5.2.4)

for all #1, r4 € My; and such that

aw Big 952 bio = 3w Bl P5{x) b o
k

for all app € X; and z € A,



2y

A e

V1. Connes fusion of discrete series © *sentations 97

3.5.3. Summary. By equations (3.5.1.8) and (3.5.2.5) respectively, the sequence
?s. Vi) ap} ?N,m 95(z) Bjn}, (3.5.3.1)
where ayp, o5 € X bjo, Bjo € Py and y € Mye, z € My, can be Te-expressed as

2 1k {aksbio}" 9(y) 9u(z) {o; Bro)} (3.5.3.2)
k

srmcgentznrion mn..ﬁ E&.mm

MU e {briann}” Ou(z) 9e(y) {Bri e} (3.5.3.3)
P

when (hy =) h; = hy s or hy 2. The restrictions on the values of the highest weights reflects

what we are able to prove, rather than the true state of affairs (cf. § 3.5.4).

3.5.4, The general case. We outline the arguments that proceed from the equality

pﬁ, (3.5.2); we shall only use the following results when this equality is already known to hold,

i.e. when the relevant localised fields are bounded.

We replace each of the localised fields Zji by vji = s.0.lim,_, Ty ¥i{u,), a bounded
intertwiner for M;; and each ¥ii by uji = s.0.lim, g ¥ji Yi(vc), a bounded intertwiner for

M. in the braiding relations. Since T 0:{u,) and ¥;i Pi(vs) are bounded operators, if
TeiVii= Y Yy Gy (3.5.4.1)
!

on H{°, then, for £ € H and n € HE®, we have

(T 95(ue)} {T;: 9ilvs)} €. ) = (T 0ilv6) €, {Zwj 95(u2)}" )

(U5 9i(va) €, 9;(e)" 7,5 )

{?:(x.) di(vs) £, Yii Ta;m)

2 Cu{9ilos) 9i(u) €, 2" Yl ) (3.5.4.2)
1

2 Ci e {Ea (v} {7 9i(vs)}" )
7

2 o {{Tu (o))} {70 O} €, 7).
1

1}

Here, we used the fact that, if T is a closed, unbounded operator, and A is a bounded
operator such that T4 is bounded, then (TA) = AT on D(T"); and also that Ti;
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(resp. ;) is affiliated to #{Diff 157} (resp. 7(Diff 1 1)), Taking the ¢, § — 0 limit gives
the equality
Ukj Uji = M ug vy O (3.5.4.3)
!

of bounded operators on H;. Similar arguments apply for the braiding relations
TS = w s O
!
TEvi= Y yuz, Cy (3.5.4.4)
:
n.i.. @:,. = MU Ve Ty Q:.
[
Note that we can mBBm&wSuw replace, say, ¥ii in the first relation with yi; U5(z ). by
multiplying on the left by Ji(r.), and using Felve) Ty = Ti; Oulv,) on D{Fy;). Finally,

in the same way as before, we can correct the vyi's and w;’s such that the principal parts

Tig, Uko aTe unitary,
4. Computing the positive braiding coefficients
We outline an algorithm for computing the coefficients

O he by S hyhahy by
t»lﬁ;&q\: Q?c Vs

N
b

Ayhoh A
1hz 2R

using explicit expressions for the braiding matrices CRiye = A2 or As;. that we

obtained in Chapter II. The precise values are not important: we ouly want to check that
there is a strict inequality: z, > 0. Of course, if ho = by g and by = Ay o then g ds

defined only for hy = h,, ., with

Il

Py=Ipi=pl+ Llp = pal+3.... min{py + py— 1, 2m — gy ~pr=1)

(42)

p=la-al+ g -l +3,...,min(g + g - L2m+l) =g g 1)

when the central charge ¢ = 1 ~ 6/m(m + 1). We have already computed in § 11.5.3 the

values of y1; when hy = hyg or hy o

2 ™
Qo [INLIR-E T ﬁt{;f.epru‘:,u _ H,Amﬂﬂv H,AHAN“ - w&.mﬂw:
>

et T T £ - )
L TR T(afg - ity
e P(=3) D=k + {g - 2721y

m

Ohpehzrhpsig hpohy oharha,
Q}u.wru; Q>
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We recall that I(z) = [ #*~1¢=tdt and T(z4+1) =
integer. We have (a) I'(z) > 0 when z > ¢ and 2n

zI(z). Let n be a strictly negative

< 2041 (b) I'(z) < 0 when

2n+1<z<2n+2. Since 1 Sr<m-1L,1<¢<mand m= 3,4,..., we see explicitly
that the coefficients (4.3) are strictly positive,
We recall from § 3.3 that
Zig Twaj =g M HEZii Zi; (4.4)
: P’

o . N ¥y . 1
on H*, forall ajg € D;. Now factorise @jp = bji cxp as a product of bounded intertwiners

for Mye. Here big = k() r Hy — H, is a bounded localised field, g ¢ Nﬁ.w:

¢ko € Dy is unitary. Then by; maps smooth vectors to smooth vectors and, on H >
fal

. and

Tio Tio (Bjacro)™ = T Fig 04 bk
=04 M Qm T .»uawwcm
e MH Oz, M Brbon za; (4.3
=6 T o D0 b
Hence *
bik M.U BiZiz=) am Y b 2 bk e o
m n L4 ;

Of course, v, and the sum in p depend on n, m; B, and the sum in n depend on m.

4.1. The case hy=hg 3. Let hy = hj = hyy by =

2.2, hay, x have conformal dimension
hy = hi2, and b, = hpq. The coefficients g, 7r (likewise a, > 0

) are known. being
braiding matrices Qmwnwi: with A

= k1 (resp. hay). We obtain

ey = Qawv..uub? 2 Q rafpohazhas = Qxcﬁ,&:.}?.fhru.u ﬁif 1hp ohizh,,

Aaah, 4 he, 0 Arohay R32hey (4.1.1)

= COhrahaiah, Q poahpgha ko,

ha1hy., Ay >0, (4.1.2)

vwhere 1 <r=ptl1<m-1.1 Ss=g+1<m Itis straightforward to verify that

HC.T Sivﬂ 1+ §+HVH) H?l B.ZVZAH?I S+L+ si

Hrgxl = Qr 4
e W;T.«. :.ILW MHAL.WT.I 3+~v+

> 0.
3+~
{4.1.3

The cases hy = Ay 4 and h; 2+ given by (4.1.3) and (4. 3) respectively, are all we need.
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4.2, The general case. More generally, let h, =

=hap, By = h; = hapey, and suppose that we have an explicit expression
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hia, hy = Ay = hy, as before, and

DAy ohashm by ohy o hashy [y
am = O 00T Gy > 0 (12.1)
For each n, we can explicitly compute the coefficient of bix,;Za; on the right-hand-side
of (4.6). and check that it vanishes when p # n, and is positive when p = n. In particular.

we can compute
Ohp ghasarh ~ho by chadarhasar
= C, 2 Cpls

LWy, S

in terms of {4.2.1) and braiding matrices m,n.nmu? B with b = hyo

hr . we are required to compute the following:

M arym Cr :.wi; ehiahaes ot hashpohiohe, 0
A,

Res haso1hy ya

M u<wi€a3u:o bl v heshy g hinh,
Gz, cnr»q i 04 hadar he yan

4
=3

The number of terms in the former sum is either 0 or 2: and. in the latter. either
The product
heyai1fhpohizha e wbhpghrahe,
Q} yhas ﬁ‘? bat gy

is a positive number, and given by

bm 1y
i {E-=r (Fr = E.Z!HW Enlsi (e -2 H+mﬂsa,~/c,
Latp _ (bgim o e-p _{b-—gdm iy wm 3 T
I( 5 - H:l.: A:ZL - Hw 2 Hm+1) + 2im+1 .r“:

Since each a; yx; > 0 by assumption, the latter inequality of (4.2.3) follows. The

paragraph). Finally, to deduce that

hy ohinh ~habhg g by ah,
- newu LI REE P-RATIN 'S B SCPAN RS R R CY
Hry = w Grytt ﬁ, vhad h?,@i\f,ﬁl .

we note that. in {4.6).if

. -
I M € zi;=10
i

4

More preciselv. for each

or 2.

e

‘o
3
o

former

can be successively {albeit laboriously) checked by explicit computation using the recursion

relations above {together with those obtained with A, in place of hy 2 see the following



y
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on H, then this holds for all g with support in J (here, b5k = %ji(g)). Taking matrix

elements with smooth vectors and applying the Reeh-Schlieder theorem, we deduce that
MU € &..u... zi5 =10 (4.2.8)
i

on H°. Arguing as in Lemma 3.4.1, we deduce that each € =10.

An analogous situation occurs for hy = Ay, since the smeared primary fields with
conformal dimensicn Ay, are also bounded operators. However, we do not have explicit
expressions for braiding matrices QF&H\,E with & = hy ;. We have them for A = ha1, but
do not know that the corresponding smeared primary fields are bounded. So we have first to
replace smeared primary fields by bounded intertwiners in the relevant braiding relations,

and this is possible only if (3.5.3) holds. The rest then proceeds as before.

5. Connes fusion of bimodules over a Type III factor

We describe Connes fusion of { M, M)-bimodules in the case when M is a Type III factor.
In the form that is developed here, we have learnt it from Wassermann [Wa2). The general
construction can be found in [Sa]. We obtain the €~ monoidal structure on the category
Bimodas of (M, M)-bimodules.

5.1. Connes’ theory of bimodules. We outline the ideas underlying Connes fusion.
Let M (resp. A, B,...) be a Type III factor and L*(M) its standard representation with
cyclic, separating vector £2. The Tomita-Takesaki theory applies, M' = JM J; and we
identify the opposite algebra M with its commutant M’ by the -anti-isomorphism M —
M,z — Jz=J. An (A, B)-bimodule is a pair of commuting normal representations of A
and B°? on a Hilbert space &. In particular, L?(M)is an (M, M )-bimodule.

A representation of M on H is a unital +-homomorphism =} M - B(H). Normality
of aZ means there is a family of vectors ¥ ¢ H such that wm«gavnﬁ is total in H, and

~— {(x§f(2)€, £) is a normal state on M for all § € F. We may write z - 7 for M(z)n. A
direct sum of normal representations is normal. If 74« M — B(H)is normal, its image
7M(M) is a von Neumann algebra (Proposition 7.1.15 of [KaR2)). A unitary equivalence
of (4, B)-bimodules H and K is 2 unitary map H — K that intertwines A and B°P.
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Since M is a 1ype IIl factor, the M -modules are all unitarily equivalent. If the represen-
tation 7 : M — B(H)is normal, it is implemented by a unitary U € Homa (L* (M), H),
ie. 7}{z) = Uz U (z € M). We also define an embedding of B in A to be a unital
+-homomorphism B — A that is implemented by a unitary map L*(B) —- L3(A).

An (A, B)-bimodule H defines, up to an inner automorphism of A4, an embedding
g: B — A givenby B — A, b s UV VU, where U ¢ Hom 4(L*(A), H} and
V € Hompes(L2(B), H) are unitary. Conversely, if p: B — A is an embedding, it defines
an (A, B)-bimodule structure on L?(4) through the representation of 5 on L*(A) given - e
by &' Jao(Jg b Jp) J4; we mm:oam this (A4, B)-bimodule by p L2(A). This gives a 1-1 cor-
respondence Mrmmmum,“% _moScGw_mﬂ%nﬁww.mﬂm (w.r.t. unitary equivalence) of (A, B)-bimodules
and embeddings ¢ : B — A modulo inner automorphisms of A. This is significant because
bimodules have an additive structure, i.e. direct sums, while embeddings have a multiplica-
tive one, i.e. composition of maps; these structures clearly induce corresponding ones on
the equivalence classes. B =A = &([), g Ap B o=jeje An @ ot Mw = (M,/mzmmp\ Vmo = 8ly') mn

e s nfe - @;\
5.2. Definition of Connes fusion. We consider (M, M )-bimodules. Lot Hg = NNQ\:
Let H; and H; be (M, M)-bimodules, X; = Homu(Hg, H;) and B = Homprer (Hy, Hj).
The algebraic tensor product ¥; @ D; 3 z ® y transforms under AP @ M 3 5 & a by

left-multiplication, 2 @ y += b' -z ® a - y. There is a contravariant sesquilinear form (., . )

J/\}
on X; ® 9, given by fa: tA, J}. COuu o ¥,
N

4
kx Q«Tf%?tu J =H (#21@y1, 2@ W) = (277 2197 30 2. 02).

by & M ‘
.&L:. U € X; and V € 9); are unitary, then X; = U M’, D; =V M} and it is easy to see that

the form is positive semi-definite.] The quotient of ¥; ® O, by the kernel of this form is a
P J

pre-Hilbert space which we denote by [X; ® D;] 3 [z ® y). When there is no confusion, we
may dispense with the mﬁmb;mmmw

The Connes fusion of the bimodules Hi, H; is defined as the Hilbert space completion
of X; ® V;; we write this as H; ® H;. M°® and M each acts by bounded operators on

3

X ®9Dj, since
(b 2;Qa y,b -23Qa p) = TV Uy Q. TV oy Utey ), (5.2.2)

where T = U=b"-U V=a-V, so that H;® H; supports commuting representations of M°P and

M. Let Ui € X; (resp. U; € X;) be unitary intertwiners, and g; : A — M {resp. ¢;) be the

Hgra gt
embedding given by M' — M', b~ Urd' - U;. The map H; — m? &= U7¢ 1s a unitary

¢ /‘ , IR N
by =
QQ =




V1. Connes fusion of discrete series rep. atations 103

equivalence of (M, M)-bimodules. Furthermore, ¥; g 9; ~ gjoiHy, 2 @ y UsyUrz 0,
defines a unitary map H; B H; — p;0:Hp that intertwines M and MoP. 1t follows that
H; B Hj is an (M, M)-bimodule unitarily equivalent to p;p;Hp. \

Since 2 € Hjp is cyclic and separating for M, X; (resp. 2);) can be jdentified with the
dense ,mcwmvpnm X2 C H;. We have the inclusion of linear spaces {¥; @ DilCc H:® ;.
More generally, we also have [H; & D;] ¢ H; B H; (resp. [X;® H,) C H; & H;) in the sense
that, if X:02 3 2,02 — £, is a convergent sequence in H;, then [z ® y] is 2 convergent
sequence in H; ® H;, foreach y € D i let [( & y] be the limit, To see this, note that

(y'yz"z 2, Q) = ?RQ.S 2.202) (=} 2y, y0)) (5.2.3)

forall y € 9, z € X;. It follows that we can equivalently define H; ® H; as the Hilbert

space completion of H; ® P; (resp. X; ® H;) with respect to the positive semi-definite form
(G 8y L&y ==} (vin) 6, &) (5.2.4)

(resp. (21 @ m, 22 ® m) = (7 (z321) 1, ma)).

More generally, if D; is a dense subspace of H; (resp. D; € H; dense). then [D. g 9]
{resp. [X; @ D;]) is dense in H; ® H;. In particular, [, @ X, (2, € 9;) ¢ #: ® H; are
dense mmvmvmnmm. Moreover, as elements of H:BH;,

[r€8" 7= (=5 )
[6-€8y) = [¢®ya]

?aw:..nmM:me&v\mannmbﬁwﬁasmbﬁmmm?

5.3. Additive structures on Bimody;. We consider the category Bimod s of (M, M)-

bimodules and bimodule maps, i.e. bounded intertwiners for M and Me?,

5.3.1. Lemma. Bimody isa C* category.

A Clinear category is an abelian category such that the Hom-sets Mor(e. b) are Clinear
spaces, and composition Mor(b, ¢) x Mor(a, b) — Mor(a, c) is Clinear. .P.O. category is a
Clinear category such that: (a) the Hom-sets Moz(a, b) are Banach spaces: and there is a
conjugate-linear involution * : Mor(a, b) — Mor(b, a); (b)if f € Mor(e, b). g € Mor(b, ),
then [lg Il < NglHIAIL AN = 1147 /1l = 1177117 and (o) = Jo~.

Proof. This is immediate. =
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5.4. Lemma (Functoriality of Connes fusion). Connes fusion defines ¢ C-bilinear

functor & : Bimodjy x Bimody — Bimod,,.

Proof. To a pair (H;. H;) of bimodules, we assign the bimodule H; & Hio Let (Hy, H)
be another pair of bimodules. and (fog): (H;, H;) ~ (Hi, H)) a pair of bimedule maps.
Define f®g to be the map H:ZHj — HRH, given by LeD; — 48D 2y — frigy
{this is bounded and densely defined): then f ®g is a bimodule map. We easily see that
Iy R1x =lygri hf B kg = (R Kk)(f & g) when the composites hf and kg are defined:
and that the assignment (f, ¢) — /B g is Cbilinear. This proves the lemma. In addition
to compatibility with the abelian and C-linear structures of Bimod sy, we have further that

(fRgy =f"Rg and||fRg] < 1FiHgll. ie. compatibility with the ¢~ structure, o

5.5. Multiplicative structure of Bimod,,. If (Hi, H;, Hy) is & triplet of bimodules.
define a unitary equivalence Qijkt Hi R (H, B Hy) — (H; ® H;)R Hy by

(ZielH; e D] 2 [zeltey]] — [[regey) e [T Hie o, it

e
Cr
s

This is well-defined since
([nelaenlll=eieen]) = ({yzn){z321)- 6, &)
=(lnesjenllneslawl)
It maps a dense subspace of H,; ® (H; ® H;) onto a dense subspace of {H, ® H) R Hy
isometrically, and intertwines A and Afer. Hence it defines a unitary bimodule mMap .

It is easy to see that

HN&kQVMB.%@@»Ww C mkﬁﬁmuﬂw&»v

(5.5.3)
(KX)o C (HiRH,)R H,:
and that. under the map Gk,
[H:@[D;00d] 2 [n@men)] — ([1on]ewn] < [H:29,]@ D) (5:5.4)
5.5.4

[Xig[X;@ Hy) 3 [21@[z: @ ()] = [monle] ¢ [XiexlgH

Moreover, if (f, g, k) : (H;, Hy He)— (H,, H,, H,)is a triplet &. bimodule maps, then

the following diagram commutes:

HiR(H;® H,) 2t (HRH,)®H,

[
n
<t

EE@&@ T\Ma?ﬁ

HR(HBH) — (H,RH,)RH,.




»
V1. Connes fusion of discrete series repr ations 105

We have therefore obtained a natural isomorphism o : ® (1x®) - B(®x 1) of func-

tors Bimod,;* — Bimod,. The bifunctor 8 is 92&031%8 a natural

isomorphism a.

For each bimodule H;, we define a unitary mn&«,&mmn.m #i: Ho®H; — H; by
(M'BH) > (V'®E ~ ¥'-¢ ¢ H, (5.5.6)
and another unitary equivalence y; : H;® Hy — H; by
[HieM] > [£®a) — a-£ ¢ H,. (5.5.7)

It is easy to see that

dit (Ho® D] > @yl — vy e A,

(5.5.8)
v [X:® Hy) > [r®9) — zy € H,.
Iff: H; — H, is a bimodule map, then the diagrams
Hy R H; & Hy H®E, —Y. g,
E@ ‘ T :i T (5.5.9)
Ho®H, = Hy H,®Hy —2 H,

manifestly commute. The bimodule H; = LY(M), is a left (resp. right) unit for & up to a

natural isomorphism g (resp. v).
Q , ° sl .?3\\?\3

8.5.1. Lemma. (Bimody, 8, LMY, o, p, v) is a monoidal category.
Proof. Commutativity of the pentagonal diagram

HiR(H;R(H, B H)) -2 (HiBH;)®(H, B H) ~° (Hi®H;)® H,)® H,

150 | [om:

LR(H;BHO)RE) —_— (HiB(H;® H)R H,
(5.5.1.1)
follows by tracking the path of the dense subspace of vectars [ X; @ (%@ De® D)) To

check commutativity of the triangular diagram

m..ETNNoﬁ.m&.L 2 Ammg.movgmu‘
Et_ Te (5.5.1.2)
.mmgm.‘ = mwﬁmu,

note that an element [z®[2®y)) € [%:®[M ®D;]]is mapped to [z®ya]and [0 202 ® y)
respectively by 1® 4 and the composite (v®1)a. By (5.2.5), they coincide. 0

[
i}
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i

5.8. /Compatibility of additive and multiplicative structures. Bimody, is both

abelian and monoidal, and the bi-additivity of ® makes these structures compatible; and

similarly with the Clinear and C* structures. It is usual to call such a functor ® a tensor
product. Let the bimodule H be a direct sum (binary bi-product) of the bimodules Hy
and Hy, H = H, & Hy; i.e. there are bimodule maps m»rwl\&blmf k = 1,2, such that
Prix = lx and i1p1 + f3p; = 1y, By the functoriality and bi-additivity of 8, H ® K is a
direct sum of H; 8 A" and H; ® A (and similarly for & &® ),

H HRK

T

1
H HRE (5.6.1)
muﬂkvu muﬁp‘ﬁ%vmﬁu

H Hy® R,

In this sense, the tensor product operation & is distributive over the direct sum @,

5.8.1. Grothendieck ring of Bimody. Let [H] be the isomorphism class of the bi-
module #. The Grothendieck ring of the abelian monoidal category Bimodyy is the ring
{with unit) generated by the elements [H]; with addition given by [H]+[A] = [H ¢ K); and
multiplication by [H].[K] = [H 8 K]. The defining properties of a ring are easily verified.

6. Connes fusion of discrete series representations

We consider the discrete series representations of Diff*$7 at a fixed central charge ¢, By
local equivalence and Haag duality they can be regarded as (M7, M) -bimodules, where

M = mo (Diff 151)", where I € 57 is a fixed interval. By von Neumann density they remain

irreducible and distinct as (M, M/)-bimodules. We consider Pos,, the full subcategory el e

of Bimodyy,, whose objects are finite direct sums of discrete series representations, For
reasons already given in § 1.2, the choice of the interval J is not essential; for definiteness,
we take I to be the upper or lower half-circle in the plane. The C~ structure is obviously
preserved, and Pos, is a C~ category. By definition, Pos, is semi-simple, with the discrete

series representations as the simple objects. We want to show that Pos, is a monoidal

subcategory, i.e. that the monoidal structure on Bimodyy, restricts to Pos,. This means
that Pos. is closed under the tensor product cperation B, and Hy = I*(M;)is an object

in Pos. (but this is clear). By the bi-additivity of ®, it is necessary and sufficient to show
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that the tensor product of a pair of discrete serjes Tepresentations is a direct sum of the

same, i.e. that

[H:BH] = Y NE(H,

ke,

{6.1)

where {[H;],i € Y.} are the isomorphism classes of the discrete series representations at
central charge ¢, and gww.v is an ordered set of non-negative integers (to be determined), the
so-called fusion rules. Of course, Y, is a finite set, with cardinality 1¥d = W.SAS —1) when
¢=1~6/m(m+1). As usual, we fix a set {Hi i €Y.} of discrete series representations,
and take the indexing set Y. to be the set of highest weights (hopgs €)y p = 1,2,...,m~—1;
¢=1.2....,m, modulo the relation (rrg)~(m—pms1- q).

6.1. Computation of Connes fusion. We compute the Connes fusion of a generating
discrete series representation, viz. Hy s ot Hys, with an arbitrary one. Let aip, aip € X

bjo. B0 € Pjiand yy. 0 € M]. 24,2, € My. By (3.5.3.2), ,Www‘

{1 cw®z; - 850) [v2-00 & T2 -bjo)) = (ayg w@. Vi i Fm/‘..n“.um. B0 22, 123

> mlmz ki Bio 2, 4129 ey bio ),
kE(i.g) el

1}

e

(6.1.1)
when the highest weight h; = hy 5 or hy.5. For these values, we have computed directly the
braiding coefficients Hie — {4.3) and (4.1.3) respectively — and in particular the indexing

set (1. 7). It follows from {6.1.1) that the map

EeDl~ B Hi lcio®by)— > rmsc,&ob
ke(i.g) kE(i5)

(6.1.2)

defines an isometric bimodule map H; ® H; — Oxeijy Hr- Its image is therefore a sub-
bimodule, and decomposes as a direct sum of irreducible pieces. Since the Hi's, ke (i, 5),
are distinct irreducible bimodules, this decomposition is unique; by inspection of (6.1.2),

the map must be surjective, and therefore a unitary equivalence of bimodules. We obtain

>

1<s=g21<m

>

1<r=p+1<m-1
ALs=g2igm

[(H12] [Hy ) = [ BH,, = [H, ) (6.1.3a)

(H2a] - [H,,] = (T2 BH,,] = [Hr.] (6.1.38)

and of course [Ho® 4, ] = {Hye B Hy) = [Hp.q), where Hy = Hy,.
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6.2. Proposition. Pos, is ¢ monoidal sub-category of Bimod,y,.

Proof. In the previous section. we obtained (6.1} in important special cases by explicit
computation. The general result now follows by induction, by using the assaciative and

distributive properties of ®. Suppose that

(Haool-[Hpod = D NI LH) (6.2.1)
(r.s)
then left-multiplication by [H12) and [H; 4] respectively give, generically,
(HHopor] + [Hupsr] ) [H, ] (6.2.2)
and
({Hamroma] + [Hoog pat) + [Hap1p) + Haproe1] ) 14, (6.2.3)

on the left-hand-side and, by (6.1.3), 2 sum of terms [Hi] on the right-hand-side. It foliows
that the tensor product H, . ® Hpq is completely reducible to a direct sum of discrete

series representations, and hence {6.2.1) holds with {a, b) replaced by {p', ¢'). for (y/, §') =
AP@%:.?%H.@HHVE&?H?WH:. o

6.3. Lemma. The fusion rules are given by

min{p+p’~1,2m~p—p’ 1) min{g4g’ ~1, 2m+1)wgeg' =1)

Hpo®E, ] = 3 > [H., (6.3.1)
r=lp-pTitl s=lg-gt i+ 1
T4+p4p’ odd 3+q+q" odd
Proof.  Observe that
[Hip) - [Ha 8 Hp,l = [Hya]- :NPL = MU 1. (6.3.2}
I€r=pdi<m~1
1<s=g+1<m
From equation (6.1.3a), it follows that
(21 RH, ] = > [H, 4l (6.3.3)

This is obvious except when (m, ) =(3,1), (3, 3) and (5, 3}, but it is a simple exercise to

check these cases by hand. The triplet of equations

:?.L,TNFL = ?«?L

?w?& : :N.?L = M Tm.n;:_
1gsmgt1<m

?NPL : :NH.L = M Tmﬁ‘.o_

1<r=ptI<m-1



0,

A

s
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now allows us to prove the lemma by induction on 7 +¢. Let (6.3.1) hold for ali (r'.q)
with 2"+ ¢’ < n: by (6.3.4), it holds when n < 3. Generically, we have
?wvrx.a. EHy,) = [H24)- Tﬂ!.& B Hpy ol - [Hpo14 B Hp ol (6.3.5)
3.5

HN!;LL B NN_u.t = Tﬁwr& N Twn:q. =2 QPL - ?&.E.QL & m‘PL.

Using (6.3.4) and the induction hypothesis, we can compute the right-hand-sides when

P +4¢ =nr, 50 we can verify the lemma for p' + ¢' = n 4 1. 0

6.4. Remark. It follows from Lemma 6.3 that N = Nk e the Grothendieck ring

1o We were fortunate that we have been able
to compute the fusion coefficients so readily.

of Pos, is commutative; and that N =8

. in so much that these Properties now appear

accidental. We shall see that the former is a consequence of braiding, and that the latter is

related to duality, in the monoidal category Pos,.

7. Ribbon and modular categories

We show that the monoidal category Pos, is a ribbon category, i.e. a monoidal category

with a braiding, a twist and a compatible duality. Although we do not prove it here, the
ribbon category Pos, is modular [Tu), and indeed all but one of the defining axioms of a
modular category are manifestly satisfied. :

7.1. Ribbon categories. Let (C. B, Ho, a, 4, v) be a monoidal category, where

o

axyz: XR(YRZ) (XRY)®R Z;
Hx t HoB X - X,
Vy @ NVEN.NQL;N‘,

it

u (7.1.1)

v

are the natural isomorphisms, and Hy is the unit for the tensor product .

A braiding in
a monoidal category C is a natural isomorphism

B=fxy: XRY ~YRX . (7.1.2)

that satisfies the cabling relations:

Bxymz = ayzy (ldy BOxz)ayxz"! (Bxy Bldg) ax yz: {7.1.3a)

azixy™! (8xz Bldy) ax zy (Idy Bbyz)exyzt. (7.1.35)

1]

Bxmyz

«
i
£
i

§

d

:
il
&

B
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Then px Bx.m, = vx; vy BH,.x = px; and the braid relation

azyx (HzBBxy)ezx vy (Brz® dy}ax.zy (ldx B fyz) =

(7.1.4)
(BrzBIdx) ayzx (Idy B Bxz)eyxz ™ (BayBIdz)ayy p

is satisfied. In this case, C is called a braided monoidal category. A tu
is a natural isomorphism

ist in such a category

%"%V.”.\%‘l\ww A._,..Hv
that satisfies
Oxgy = Brx Bxy (6x R6y).
It follows that Oy, = ldy,. A duality in a monoidal category

object X, of a dual object X and a pair of morphisms

5= x: Ho— XBX, (7.1.7

\DV\
£=ex: XRX — H, (7178
that satisfy
vx (dx Bexjoy g ™ (px Bldy) = uy: (7.1.8q)
Hy Am.».@mawv OF ¥ % 2&%.,.@ nx} = vy (7.1.85)
For each morphism f: X — Y, we have the dual morphism
7:7 2 ypygy MOSE poow mu X, (7.1.9)

where we have omitted the standard isomorphisms. A ribbon category [Tul, or balanced

rigid braided monoidal category [JS), is a monoidal category with a braiding
compatible duality, j.e.

catwist and a

6x ® H&MAV nx = (ldy ® %k’,v 7y (7.1.10)

This is equivalent to the condition: by = Gx.

7.2. Braiding and twist in Pos.. For the remainder of this chapter, let 7 ¢ 57 be the
upper half-circle. Let H; and H; be (My, M;)-bimodules in Pos.. Wassermann [Wa2] has

proposed the braiding map ub.
-
{
P HiBH; = ;B Hi Jape bjol = 77 {rebjo &u\ @ ryaip (7.2.1)
P mﬁ @rw_\‘_. e @ ? o /,
g 4 TR
NQ,:FI izt & G
,‘ ki o
SR TR
,\Qm\ém ; .m,w_‘ /Wm\ m ﬁa ) hf\.‘ AA o W

is an assignment, 1o each (7,77}



VI. Connes fusion of discrete series Tepresentations 111

where r, = ¢™Lo, This is clearly a unitary equivalence of bimodules. It implies that the

Grothendieck ring of Pos, is commutative. We also define the twisting map
bii Hi— H;, §— e ?milog, (7.22)

This is a unitary equivalence, since H; is semi-simple and #; is just multiplication by the
factor €727 on an irreducible summand # ¢ H; when it is isomorphic to the discrete
series representation K, . with highest weight (A, ¢). It is trivial to check that B and @ are
natural isomorphisms; and that the relation (7.1.6) is satisfied. It remains only to check

the cabling properties of 4.

Proposition 7.2.1. The natural isomorphism § is a braiding in Pos,.

Proof.  Since the objects of Pos, are just finite direct sums of the simple objects; the tensor
product B is bi-additive; and the relevant maps are natural, it suffices to check the cabling
relations on the discrete series representations. We do this by checking the cabling relations
on larger bimodules that contain the discrete serjes representations as sub-bimodules, viz,

on the bimodules

HET RHES (1.2.1.1)

consisting of (m, n)-fold tensor products of the generating bimodules; from the fusion rules
in Lemma 6.2, we know that every discrete series representation occurs as a sub-bimodule
of some tensor product of this form. Since the method js identical in each case, we only

prove the first of the two cabling relations (7.1.3a), i.e. we prove that the diagram

8

&NMEAWN,ENN»V + ?ﬂu.Emrva«_.
(H: B H;)® H, H; 8 (He ® Hi) (7.2.1.2)
QEEK« 14875

-1

(H;RH,)RH, —° H; R (H; 8 Hy)

commutes, when the bimodules H;, Hy and Hy have the form (7.2.1.1). To begin with, let
them be just the generating representations, Hy ; or mm,m. The proof of the general case

will be a straightforward generalisation.
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Let [aip & [bj0? @ cxo}] be an element of [X; % [D;97 @ Di]]. Morsover, we choose

. . - 1. o ,
bj0 € P, to have support only in the sub-interval of J corresponding to 55 < < x; and
w. The

cro € P to have support only in the sub-interval corresponding to 0 < § <

s

linear span of these vectors is clearly dense in H; & {H; 8 Hi). Under the composite map

(6®1d) o, this element is mapped to

Mﬂ-.ﬁﬂa&.ﬂdﬂﬂ@ﬂa (¢ 3%¢) ﬂalw ®mk& € ANNQENM.VNNNa

x

Similarly, let [[8,6 ® aio] ® 740 ] be an element of the dense subspace [{X; ®

(#;® H:)® Hy. Under the composite map {Id ® 3 e~ it is mapped to

[Bo@r] Ireqmr, @reawlll] € H;R{H, & Hi. (7.2.1.4)

7

Question: where is (7.2.1.3) mapped to by (Id® @) a™!7

Define the following unitary equivalences of bimodules. Let

T:HRHE)RH ~ (P H.8He— B P 4.

me (i, j) mE, FY nE{m, k)

be given by, <f. (6.1.3),

T [[850® e @k ] — M CT (Bt 00012 6 720)
™m | wwv
— TS Dl B 2.
Also let
CiiiBRL) - B mei- @ @ 1, (7.2.1.60)
pelk, i) PE{k ) € (5. p)
be given on [ Bjo ® [Cho ® Aplle X0 X X0} by
U: [Bjg®[Cro® Apf)] m M CL [ Bjo @ Cpy Ay 2]
s (7.2.1.60)

0 d2.

— ) CL YL By
P ¢

Trivially, we have the commutative diagram

@3y a1
(HiRH)R H, gemner
T )
U(ld®8) o~ T .,
O @ n e
me{i.j) nelm, k) pE(R ) Sl )
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The vector
T[[8j0® aip) @ 7o) = M cn Ml; DLk Tnm Bmi ig2 (7.2.1.8)
m n
is mapped by U (Id® ) a™! T to
M QM. M h.wv Qah Ypi Q_.ob. AMMH.WV
P ]

To see this, it suffices to note that: (i) Bimodule maps intertwine the operators e'Le; and

(ii) Since ko € Dk and 7 Y407, € Xy, we have the following assignment of non-principal
intertwiners:

TeTkoTr = {Te Trer } (7.2.1.10)

In contrast, since Bj0 € X; and r, fjor, € ;. we have (but not yet used) instead

rrBjors o (TR g r Y (7.2.1.11)

These assertioans follow from our smearing conventions; i.e. from (IV .2.1.4). The construc-
tion of intertwiners {a;;} for M; from localised felds ?.«.Ab? J € CF(8'); and that of
intertwiners {b;;} for M. from localised fields {;i(f o 4. preserves these relations. By
similar considerations, we see that T maps (7.2.1.3) to

DO Y DLy cam bmian. (7.2.1.12)
m n
Claim: this is mapped by U (Id ®B) ™! T* 10
DoCk Y Ch bepcpiaint. (7.2.1.13)
P )

This is certainly the naive result obtained by replacing the intertwiners o, §,7in (7.2.1.8)
and (7.2.1.9) by @, b, ¢ respectively. However, the intertwiners a, o (resp. b, B; and e, ¥)
have support in different intervals, so we have to Jjustify the claim,

We proceed in the {following way. Consider the graph of the map I/ (Id ® B) o™t T,
and the dense subspaces corresponding to different supports for the intertwiners @, 3 and
7 in (7.2.1.8) and (7.2.1.9). Using continuity arguments, modify these supports until they
coincide with those of the intertwiners @, b and c; then observe that the result is the required
one. We perform the following operations on the pair of expressions (7.2.1.8) and (7.2.1.9),
which lie in the graph of U (I1d ® #) @™! T~ (draw some pictures!); (i) We can certainly

restrict the respective supports Joy Jp, Jy of the intertwiners a, f, v. We choose Jy to

AT i

1
|
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correspond to 0 < 4 < wﬁ and Jg to correspond to 7 < 4 < w\.? (ii) Since the intertwiner
o occurs a8 a;of2 in both expressions, we can use continuity to replace this vector by an
arbitrary one in Hj;, and therefore change the support of aj arbitrarily. We choose J,
to correspond to ms. < # < 2x. The intertwiners a, § and 4 now have disjoint supports.
iii) In (7.2.1.8) we braid 8 with a; and in (7.2.1.9) we braid B first with 4 and then a. so
that 3 acts on the vacuum vector in each case, Now change its support to correspond to
17 < 0 < 7; and then undo the braidings. The braiding coefficients do not change even
though the support of 8 has been altered, because the relative positions of the supports
remain the same, (iv) Finally, extend the support of o to all of the lower half-circle. This

proves the claim.

Define also the unitary equivalence

Vi(H;BRH)BH — (B H&H P & =, {7.2.1.140)
r€{j. k) r€{j, k) se{r,i)
given on [[Bjo ® Cro?) ® Do) € {[X; ® T2 ® D ] by
Vi [[Bjo @ Crof?) ® Dig) M Cix {Bri Cro 82 ® Dyg)
i (7.2.1.148)
= 2 Gk D0 Di Da Bt Ci 2.
So we have the commutative diagram
H;R(H,®H;) < —~ (H;RH)RH,
L T (7.2.1.13)
. VaUr
D D x S &b
P&{k, i) 9€{i,p) rE{j k) sE(r i)
The vector
UlBjo®[Cho® Dyp)) = M cE, M Cly Byp Cpi Dig 2 (7.2.1.16)
P g
is mapped by the composite Vo I/ to
M Cly MU D7 Dyr By Crp 2. (7.9.117)
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Claim: the composite V a U” maps (7.2.1.13) t

e S DR by, (7.2.1.18)
r L

The proof is along the same lines. We consider (7.2.1.16) and (7.2.1.17) as an ordered
pair in the graph of ¥ a U”, and use continuity arguments to change the support of the
intertwiners D, B, C: (i) Let the support of D be restricted to 0 < § < 1r; that of B to
<< ms.“ and that of C to ma < @ < 2. (ii) By braiding B with C, and then D, in
(7.2.1.16); and with C in (7.2.1.17); then changing the support of B when it acts on {2, and
finally unbraiding, we can change the support of B so as to correspond to ix <6 < x. (i)
By first braiding and then unbraiding C with D in (7.2.1.16); 20d changing the support of
C on each side when it is acting on the vacuum vector, we can change its support so as to
also correspond to x < § < 7. {iv) Now change the support of D tor < # < 2. This
involves braiding D with B and Cin (7.2.1.17), changing its support, and then unbraiding.
Now, because the relative position of the support of I, with respect to those of B and C,

is changed, a phase factor

ml..:,...?lft?yﬁwmlui?.+c|3|>; = eri{hitho—h} (7.2.1.19)

is introduced, cf. the remarks following the proof of Proposition 1V.2.2. (v) Finally, correct

the support of C to 0 < # < x. This establishes the claim.

However, the image of [ a;p ® [bj01? ® co) ] under the braiding map 3 is
Are 16502 @ cro] ® Txio Ty} (7.2.1.20)
which is mapped by V, through the intermediary
S Ch [rrbrrcro? ® reaior] (7.2.1.21)
-
to (7.2.1.18). Here we note that we have the assignment
Trligry b {eTihithehY L g p ey (7.2.1.22)

Hence the diagram {7.2.1.2) commutes when H;, H; and H) are the generating representa-
tions Hy 7 and Hy 2. The proof in the case when they are tensor products of the generating

" T D
representations follows from the results of following section.

i
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7.3. More explicit computations of Connes fusion. We compute explicitly the ar-

bitrary tensor products of the generating representations, viz. Hy 5 and H, 2. That is, we

show how to produce explicit unitary bimodule maps from the tensor product space into a
by

mm\,?: present) to rigoreusly

Justify the explicit computation of Connes fusion of arbitrary discrete series representa- .

direct sum of irreducibles. This often compensates for not bej

tions, cf. § 6.1. However, the presentation shall be with a view to completing the proof of

Proposition 7.2.1. Consider the M-fold tensor product of generating representations,
Hi = Hy, (- (H;,,,®H;,, ), (7.3.1)

where i = ({;.....1p¢). The linear span of the vectors

(M-1)

1 11 -
ool Vel 1) ek, el (x,_ 8%, ) (1.3.2)

is dense in My, even when we arbitrarily restrict the support of each intertwiner a!™) to

a sub-interval of {§ : m < @ < 27}. In particular, we shall take n disjoint sub-intervals,

Ji.o+Jar. and let @™ be supported in J,,. Using the unitary equivalences of bimodules

H,BH — B H, [|aoef — V Cf, a,e, 7.3.3)
3E{iyn, 1)
where H, is an arbitrary discrete series Tepresentation, we obtain the unitary equivalence
Hy— b - D H, (7.34)
Sa-1€{iMoriing) s1€{i1, 92)
which maps the vector (7.3.2) ¢
LI 1 (M~1) (M) P
me a, 2 M Cio b MUHHS QM,VS sy T mee (7.3.5)
k]

M- 81

In particular, this has the form a;pf2, with ajp € Xy, the bounded intertwiners for M,

mapping Hg to H,;. Simdilarly, let

it

H; c(Hy BHy ) )R Hj (7.3.6a)

He = (- (Hpp, B Hy, ) ) 8 Hy, 7.3.65)

be tensor products of generating representations and consider the dense subspaces spanned

respectively by the vectors

[Pl esh el :.:@;a@?# (7.3.7a)
(2o dl o] e (D028 9., |- (7.2.70)
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where the intertwiners 8™ (resp. ¢!{™)) have mutually disjoint supports. We likewise have

unitary equivalences:

H — e - B A,  (7.3.80)

tx-s €{inoriin) L€l t2)
H, — mw @ Hy, (7.3.8b)

un-1E{kpoy. kp)  uwr €k, u2)

which respectively map (7.3.72) and (7.3.7b) to

bR = 5 Db
t

_ tae ) 1) N-1) (N
- MU .th.”..“u.z M @33 biyey - .vA sﬁvz &z:\m (7.3.94)
trey 3]
cxof? = M D} e 2
u
- up-y (1 (P-1 P -
= MU Dy loks MM Dily, P:VE ...n.:f.w:. m:.wb (7.3.9%)
uN-1

Here bjp € 9); and cxo € Ps; by choosing the supports of the b(™)’s and ¢{™)'s accordingly,
we can clearly also shrink the supports of bjs and cxp arbitrarily. By definition, the vector

?.B [ mu.& has norm

1

(aigniobigbiof, 2) = (Pi{agaio)djel2, bj?)

) (7.3.10)
{Jilbygbio) 2, el ).

This has the form

M CIDS S CF DY (9y,(a7a,)bef2, bo12) (7.3.11)

oot

Let H,, be a discrete series representation, i.e. an irreducible bimodule; and let Upo € Dpm.
Then

- N ) (M-1) (M M~ -
Im(ajas) = Unmo(ay) -y ) a M)t (@, --aMY MY s (131

This can be evaluated when the a!™ are (bounded) localised fields, exactly as in § 3.3,

where we had M = 1; and therefore also when the ¢™) are arbitrary intertwiners for M,

using the methods of § 3.5 which construct intertwiners from localised fields.

B ERO
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We sketch the M = 2 case. It is straightforward to fill in the details. We have:
1) (2 n (2
o (a41,00) " (@50 Uty = 3 M M Sm R (i) (el (7313)

3343

where
RE, = CoimrCiem ™
5 = Qc..usaﬁ:urﬂa {7.3.14)
ng T “0iz g8
are the braiding coefficients. By inserting von Neumann algebra elements, we have
MU MU‘U MU% Hnﬁvwn%wawuob HnE@mn:»Fobv (7.3.15)

n,4 P
for all z, y, z in the &mmv; generated by M; and My.; or at least by the respective dense

sub-algebras corresponding to dividing each of the intervals I, It into a disjoint unjon of
sub-intervals. Arguing as in Lemma 3.4.1, this inequality also holds for fixed =, #;; and
when we restrict the sums such that p, g range over the same {but arbitrary} subset of the

original values. In particular, this implies that
Sio= TIRY (7.3.16)

for some positive constant 7,7 depending only on n, and for all p, f;. It follows that

(7.3.17)

e @ bjo) If* =

where

vy
]

3 TR, alal byt

n, iy, p

= MM%N:Q o al?) bd;
t

and
[aio ® bjo} = 3 S TR, DY alal? 6,02 {7.3.19)

is the required unitary equivalence. The arguments generalise to arbitrary M.
In summary, there is a unitary equivalence from H{® H; to a direct sum of irreducibles,
which has the form
ol = 5K ol 7
, {7.3.20)
MU L, b N 10 N g

9192 GN 19N TENIN 41

This generalises the special case M = N = 1 obtained before. But now the same must be
true for [aip @ bjo ® cxo} € Hi ® H; ® Hy (and 5o on), wherever we choose to place the
brackets, provided that the elementary intertwiners have disjoint supports. The proof of

Proposition 7.2.1 is equally valid for tensor products of the generating representations.
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7.4. UE&Q in Pos;. Let X be an irreducible bimodule in Pos.. An irreducible bimod-
ule Y, for which the tensor product X RY contains a summand isomorphic to the vacuum
sector Hg, will be called a conjugate of X. From the fusion rules, it is clear that ¥ always

exists, is unique up to isomorphism, and X ®Y contains the vacuum sector precisely once;
moreover, ¥ is isomorphic to X.

In fact, given the existence of conjugates, the following argument of Wassermann’s
shows that uniqueness follows, and X ® Y necessarily cont in

The proof proceeds by showing that

5 only a single copy of Hy.

mQBAm~ EN‘W muv = mosﬁmf mn Ew\v A.NN»HV

as linear spaces, for all bimodules Hy, Hy. Setting Hy = Hy and Hy = X shows that
Hom(Hy, X BY) = C, by irreduciblity of X. If Z is another conjugate of X, then set
Hy = Z and H; = Hp to deduce that Hom(Z, Y) = C, by the previous result. Let

n: Hi—-XR&Y,;

(1.4.2)
£ YRX — ‘mo

be non-zero bimodule maps; they exist because Y is a conjugate of X. For each pair of
bimodules Hy, H;, define linear maps

foy iy + Hom(Hy ® X, H) — Hom(H,, H;RY);

7.4.3
hm&?b«u : moaﬁmmumu@w\v — mosmmwg‘wﬂ mnv A v
by
o ‘ﬁmquuﬁmqv = AN..EHQV\V OHLX,Y Ammmm = dv VH, lu“ A v
7.44
QI_.ZQAMV =V, Qn:? @mv Qﬁub\.klﬂ A%EHQNV.
It is easy to show that
98, 1 Jr, 1, (T) = T (Idg, B7); (7.4.5q)
So 19, 7,(5) = (ldg, R o) 5, (7.4.5b)
where
7 =vy JdyBe)oxyx 1 (W 1dx) ux™? € End(X); (7.4.6a)
o = uyx (eB1dy) ayx,y (Idy B 7) vyl g End(Y). (7.4.6b)

Since the bimodules X, Y are irreducible, v = kIdx and ¢ = &' Idy for some scalars k, k'
not depending on 1, Hy. Then gp, wr, fo, 1, (T) = kT, fu, m,981,,5,(S) = k' T and we

must have k = k'. To prove (7.4.1), it suffices to show that k # 0, whence we can choose
the maps %, € such that k = &’ = 1.

e it et

<
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We show that (Id x Be¢) axy.x"! (nBldx) # 0. By changing the maps ¢, 5 by suitable
non-zero scalars, we may assume that ¢7¢ and 77" are projections, onto submodules of Y &X
and X B Y respectively, Let ey = " B ldy and € = Idy Re"s. In the following. we
suppress the isomorphism o. Let

Endp (A BYBX) = M
U

Endp, (Y B X)

i
>
N
S
~1

U

t
T

Endy, (X7

Then M AN’ = C and N P’ = C. The latter, and also the former by the same argument.
follows by regarding X as an (M, End g, (X)°7}-bimodule, which can be identified with
Hg, and Endpy, (X ) with Zwu“ then use the irreducibility of Y. Now

e, Me = Endp, (6{XBY)BX)

= Enda, {Ho B X) {7.4.8)
= Pey,
50 nr,wa e1606q = 7 €; for some x € P. However, e; € Endp (X BY 8 X, and
e Endp, (X BY B X, 60 = Endy (Ho® v, = Ce (7.4.9)
by irreducibility of X', so that
1606 = A€y (7.4.10)
for some A € C. Now ¢; € P and
g= \ uenr, (7.4.11)

wEU(F)

where ['{P) is the unitary group of P, is a non-zero projection in NN P’ = C; hence g = 1.
It follows that A # 0. If k = 0, then eye; = 0 and A = 0. Hence % # 0. Choosing the maps

7. € such that k = 1, we obtain the iden

vy Jdy Be)axyx ™ (B My px™? = Hdys (rd.12a)

py (ERIdy) oy xy (ldy Brjoy ™ = Idy (7-4.12)
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We define the dual object H of 2 bimodule H to be the same bimodule H. The maps

ny: Ho— HRBRH;

(7.4.13)
Ey HRH— Hg
are chosen such that the identities
v (e Ren)ayg g™ (me Bldg) pr™' = ldm (7.4.14a)
1573 (eg ® Hmwwv oF g EF Q&ﬂ.@ ny) ~\m.l~ = Hawﬂ (7.4.145)

hold. When H is irreducible, we have already seen above how this can be done. When K
is the direct sum H = @; H; of irreducibles, we define ng to be the map from H into the
summand &; H; 8 H; of H R H, given by ny = & Na,- The map £ is similarly defined.

7.5, Compatible duality. The identity

Amm & Hmuv N = Ammm B %ﬂ.v N5 Aﬂ..w.:

is clearly satisified because H = H, 5 = e~2"lo and, for H = @; H;, 2 direct sum of
irreducibles, the image of ng sits inside @; H; ® H,.
LA Lm&w\?}éyﬁ\&ﬁ@f it N&K\n

/ ~ J
aho o) H 3 H!

;
;
!
:
:
H

Chapter VII

Open problems and further directions

We list some open problems and possible directions for further investigation.

1. It remains to study the properties of the category Pos,. As a ribbon nuﬁmmoav‘, it has a
canonical trace: positivity, tr(z"z) > 0, and the Jones-Markov property should be nwmnwmg.:.\
Pos, mro&m\&mo be 2 modular category, and thus should give rise to a 3-dimensional

topological field theory. It remains also to study and classify the subfactors that arise.

2. An apalogous coset construction exists for the unitary highest welght representations
of the super-Virasoro algebra. Several new features in these models make them interesting
to study, such as the construction of the {super-) Lie algebra elements and new primary
fields, while enough remains similar to the Virasoro algebra case considered here to suggest

that the same methods will continue to be useful.

3. Some technical problems still remain unsolved in our work. If 7 : Diff *§! — PU(H}is
a positive energy representation, the pull-back x*U/{ H) of the circle bundle U(H)— PU(H)
is a topological central extension of Diff *§1. This should be isomorphic to a smooth central

extension.

4. The braiding relations satisfied by localised fields hold on the dense subspace of smooth
vectors. We would like to know that they held as operator identities,

5. Constructive conformal field theory possesses the main features of “general” and “al-
gebraic” quantum field theory, satisfying both the modified Wightmann and Haag-Kastler

axioms. It would be interesting to understand the role, if any, of path-integrals,
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