
Outline of a research programme

Foundations

Categorifed von Neumann algebras

von Neumann algebras admit both a concrete definition (as sub-∗-algebras A ⊂ B(H)
satisfying A′′ = A), and an abstract definition (then referred to as ‘W ∗-algebras’). There
similalry exist two competing definition of bicommutant categories: one concrete, and
one abstract. It is evident that every abstract bicommutant category is an instance of a
concrete bicommutant category, but the converse is currently not clear.
Objective: Find a suitable set of extra conditions on concrete bicommutant categories
so as to make the definition exactly equivalent to abstract bicommutant categories.

Modules over von Neumann algebras satisfy some remarkable properties, not shared
by modules over other types of algebras. We expect module categories over bicommutant
categories to exhibit similar properties. If H is a module over some von Neumann algebra
A, then A decomposes as A = A1⊕A2, with A1 the kernel, and A2 acting faithfully on H.
Objective: Prove that if C is a module category for a bicommutant category T , then T
decomposes as T1 ⊕ T2, with T1 acting by zero on C, and T2 acting faithfully.
If H and K are faithful modules over a von Neumann algebra A, then HomA(H,K) 6= 0.
Objective: Prove that if C1 and C2 are module categories for a bicommutant category T ,
with T acting faithfully, then FuncT (C1, C2) 6= 0.

If a W ∗-algebra A acts faithfully on a Hilbert space, then its commutant A′ is again a
W ∗-algebra, and A′′ = A. The corresponding statement for bicommutant categories is
non-trivial (e.g., it involves checking that the commutant category has absorbing objects).
Objective: Prove that if a bicommutant category T acts faithfully on a module category
C, then its commutant T ′ := EndT (C) admits absorbing objects.
Objective: In the above setup, prove T ′ is again a bicommutant category, and T ′′ = T .

W ∗-algebras are C∗-algebras that admit preduals. One way to describe the predual
A∗ of a W ∗-algebra is A∗ = L2A⊗A L

2A (algebraic tensor product), where L2A denotes
the standard form of A. If T is a bicommutant category, the analog of the the standard
form is the ideal of absorbing objects Tabs ⊂ T . Let T∗ := Tabs ⊗T Tabs, where the tensor
product is the relative version of the maximal tensor product of C∗-categories.
Objective: Prove that if T is a bicommutant category, then T∗ is a predual in the sense
that Funcln(T∗,Hilb) = T , were Funcln denotes the set of locally normal functors.

The ideal of absorbing objects Tabs ⊂ T plays a prominent role in the theory of bicom-
mutant categories, it is therefore important to understand when Tabs = T
Objective: Prove that if 1T is simple and Tabs = T (equivalently 1T ∈ Tabs), then T is the
unitary ind-completion of a rigid C∗ tensor category.
Objective: Classify bicommutant categories that satisfy Tabs = T .

Expected examples

So far, few examples of bicommutant categories that have been established. These
are the categories of solitonic representations of rational conformal nets, and the unitary
ind-completions of unitary fusion categories. We expect there are many more examples.



Objective: Prove that the following are examples of bicommutant categories:
• The category (Bim(A),�A) of bimodules over a von Neumann algebra A.
• The category of measurable bundles of Hilbert spaces over some measure space X.
• The category G-equivariant measurable bundles of Hilbert spaces, for some G X.
• The category of representations of (= equivariant bundles over) a measurable groupoid.
• The category of unitary representations of a discrete group / locally compact group.
• The category Hilb[G] of G-graded Hilbert spaces, for G a discrete group.
• The category Hilbω[G] ofG-graded Hilbert spaces with associator twisted by a 3-cocycle.
• The category Hilb[G] := C0(G)-Mod, for G a locally compact group.
• The category Hilbω[G] for G locally compact, where ω is a multipicative gerbe on G.
• The category Hilbω

H [G], for H a locally compact group acting on G and preserving ω.
• The category of representation of a locally compact quantum group.
• The unitary ind-completion of a rigid C∗ tensor category.
• The category of representations of the tube algebra of a rigid C∗ tensor category.
• The category of representations of a conformal net A.
• The category of solitonic representation of a conformal net A.
• The category of B-topological solitonic representation of A, for B ⊂ A a subnet.
• The category of unitary topological line defects in a unitary d = 2 QFT (or even d ≥ 3?)

In [Hen17], we showed that the category Sol(A) of solitonic representations of a ra-
tional conformal net A is a bicommutant category, and that its Drinfel’d center is Rep(A).
We conjecture that this result also holds true in the absence of the rationality assumption.
Objective: Prove that for every conformal net A the category Sol(A) is a bicommutant
category, and that Z(Sol(A)) = Rep(A).
More generally, given an inclusion of conformal nets B ⊂ A, one can consider the cate-
gory SolB(A) of B-topological solitons of A.
Objective: Prove that SolB(A) is a bicommutant category, and that it is equivalent to the
relative commutant of Sol(B) inside Sol(A). Compute its center.

Disintegration

Commutative C∗/W ∗-algebras correspond bijectively to locally compact topological
spaces/measure spaces by the Gelfand–Naimark theorem. The analogous question for
bicommutant categories concerns symmetric (=‘commutative’) bicommutant categories.
If G = (G1 →→G0) is a measurable groupoid, we expect Rep(G), the category of measur-
able Hilbert bundles overG0 equipped with an action ofG1, to be a bicommutant category.
Objective: Show that for G a measurable groupoid Rep(G) is a bicommutant category.
To go the other way, we must work over super-vector spaces, because sVecC is the al-
gebraic colsure of VecC. (The Gelfand–Naimark theorem is typically stated for algebras
over C, as opposed to over R.) In the next two objectives, everything is implicitly ‘super’:
Objective: Prove that for every symmetric bicommutant category T there exists a mea-
surable groupoid G such that T = Rep(G).
The category Rep(G) admits a fiber functor to L∞(G0)-Mod. A first step would thus be:
Objective: Prove that every symmetric bicommutant category T admits a fiber functor
T → L∞(X)-Mod, for some measure space X.

If A is a von Neumann algebra, X is a measure space, and L∞(X)→ A is a map that
lands in the center of A, then one can construct a measurable bundle of von Neumann
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algebra {Ax}x∈X such that A =
∫ ⊕
x∈X Ax. The following is a simultaneous generalization

of disintegration, and of de-equivariantization:
Objective: Prove that if T is a bicommutant category, G = (G1 →→G0) is a measurable
groupoid, and Rep(G) → Z1(T ) is a braided functor, then one can form a ‘measurable
bundle’ of bicommutant categories over G0 along with an action of G1 such that T is
equivalent to the category of measurable sections equipped with an action of G1.

Continuous gradings, continuous actions

G-gradings and G-actions are fundamental in the theory of fusion categories. When
applied to bicommutant categories, we expect these two notions can be generalised to
the case when G is a locally compact group.
Objective: Define what it means for a locally compact group G to act on a bicommutant
category. Prove that the category of equivariant objects is again a bicommutant category.
Objective: Define what it means for a bicommutant category T to be graded by a locally
compact group G. Show that if ϕ : H → G is a continuous group homomorphism, then
we can pull back T along ϕ to obtain an H-graded bicommutant category.

The notions ofG-action andG-grading (whereG is a locally compact group) should be
special cases of actions of locally compact quantum groups on bicommutant categories.
Objective: Define what it means for a locally compact quantum group G to act on a
bicommutant category, and show it encompases the notions ofG-actions andG-gradings.

If G is a locally compact quantum group, then Rep(G) acts on Hilb via the fiber functor.
We expect that the commutant category EndRep(G)(Hilb) can be naturally identified with
the category Rep(Ĝ) of representations of the dual locally compact quantum group Ĝ.
The category Rep(G) would thus be an example of a concrete bicommutant category.
Objective: Prove that Rep(G) acting on Hilb is a bicommutant category.
We guess all concrete bicommutant categories on Hilb arise from the above construction:
Objective: Prove that concrete bicommutant categories on Hilb are the same thing as
locally compact quantum groups.

The celebrated result of [ENO10] states thatG-graded fusion categories are classified
(up to equivalence) by homotopy classes of maps from BG to classifiying space of the
Brauer-Picard 3-groupoid. We expect an analogous result to hold true in the context of
bicommutant categories, where G is now allowed to be a locally compact group.
Objective: Define the Brauer-Picard 3-stack of bicommutant categories and invertible
bimodule categories, and prove that stack maps from BG to the Brauer-Picard 3-stack
correspond bijectively to G-graded bicommutant categories.

2-groups

Pointed unitary fusion categories are classified by a finite group G, together with a
3-cocycle in H3(G,U(1)). If G is a locally compact group, then a class [ω] ∈ H3(G,U(1))
is represented geometrically by a multiplicative gerbe on G. For ω as above, we will
construct a W ∗-tensor category Hilbω[G]. Its underlying category is the category of rep-
resentation of a continuous trace C∗-algebra with spectrum G.
Objective: Prove that Hilbω[G] is a bicommutant category.
We expect all pointed bicommutant categories to be of the above form.
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Objective: Define what it means for a bicommutant category to be ‘pointed’, and prove
that pointed bicommutant categories are classified by a locally compact groupG, together
with a multiplicative gerbe on G.

The String group String(n) is the next group after Spin(n) in the Whitehead tower of
SO(n). It’s a 2-group whose homotopy type is that of the 3-connected cover of SO(n).
If V is a finite dimensional real Hilbert space, one can form the free fermion conformal
net based on V , which one then uses to construct a bicommutant category Fer(V ). The
construction V 7→ Fer(V ) is a higher categorical analog of the Clifford algebra construc-
tion. A folklore theorem says that a spin structure on an n-dimensional vector space V is
equivalent to the data of a Morita equivalence between Cliff(V ) and Cliff(Rn).
Objective: Prove that a string structure on an n-dimensional vector space V is equiva-
lent to a Morita equivalence between Fer(V ) and Fer(Rn).
Objective: Find a direct construction of the bicommutant category Fer(V ) (ideally one
which resembles the Clifford algebra construction), other that the category of solitonic
representations of the free fermion conformal net associated to V .

Homotopy theory

Free fermions appear prominently in Stolz-Teichner’s conjectural description of TMF ,
and play the same role as Clifford algebras do in the description of real K-theory. The co-
homology theory TMF is string-oriented by the celebrated work of Ando-Hopkins-Rezk,
while real K-theory is spin-oriented by Atiyah-Bott-Schapiro. Finally, we conjecture that
free fermions can be used to describe string structures similarly to the way Clifford alge-
bras can be used to describe spin structures. Two strongly analogous pictures emerge:

real K-theory Clifford algebras

spin group

TMF Free fermions

string group

The 8-fold Morita periodicity of real Clifford algebras is directly related to the Bott period-
icity of real K-theory. It is thus reasonable to ask whether the free fermions bicommutant
categories exhibit a periodicity mirroring the 576-fold Bott periodicity1 of TMF .
Question: Do the bicommutant categories Fer(Rn) exhibit a Morita periodicity similar to
the 8-fold Morita periodicity of real Clifford algebras?

The Dixmier-Douady classification byH3(−,Z) of stable continuous traceC∗-algebras
holds true because Aut(K(H)) = PU(H) is a K(Z, 2). Taking bundles with fiber B(H) as
opposed to K(H) yields the same classification. The higher categorical analog of the infi-
nite dimensional Hilbert space H is the W ∗-category of modules over the hyperfinite III 1

factor R. The analog of B(H) is Bim(R). And the analog of Aut(B(H)) is Aut(Bim(R)).
Objective: Prove that Aut(Bim(R)) is a group (as opposed to a higher group), and that
it is isomorphic to Out(R), the outer automorphism group of R.
The group Out(R) is not a topological group (viewed as a topological group, its topology
would be coarse), and the most natural structure that it has is that of a condensed group.
Objective: Prove that the homotopy type of Out(R) is that of a K(Z, 3). (This should
follow easily from a recent result of Ozawa [Oza25].)

1576 = 24× 24.
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Objective: Define what it means to be a bundle with fibers Bim(R) over some topological
space X, and prove that those admit a Dixmier-Douady classification by H4(X,Z).
This would align well with the fact that K-theory admits twists by H3(−,Z), while TMF
admits twists by H4(−,Z).

In [HP23], we showed that for every Morita equivalence class [C] of unitary fusion
categories, there exists a canonical bicommutant category T[C] associated to it.
Objective: Prove that Aut(T[C]) is a group (as opposed to a higher group).
As above, we treat Aut(T[C]) is a condensed group.
Objective: Prove that the homotopy type of BAut(T[C]) agrees with that of the geometric
realisation of the Brauer-Picard 3-groupoid of [C].

Algebra objects

For C a fusion category, Ostrik’s theorem provides a useful correspondence between
(certain) C-module categories and (certain) algebra objects in C. We expect this cor-
respondence to survive for module categories over a bicommutant category T , when it
comes from a rigid C∗ tensor category C.
Objective: For T = Ĉ the unitary ind-completion of C, prove an Ostrik’s theorem relating
T -module categories, and W ∗-algebra objects in C as defined in [JP17].
Question: Investigate whether a version of Ostrik’s theorem can be formulated for mod-
ule categories over general bicommutant categories.

Let T be the unitary ind-completion of a rigid C∗ tensor category C. Given a W ∗-
algebra object A, we wish to understand the associated T -module categoryM :=A-Mod.
A W ∗-category is called factorial if it is the category of modules over a factor.
Objective: Let A andM be as above, and let

B :=
⊕

c∈C, simple

Hom(c, A) ⊗̄Hom(c, A),

Prove that if T → End(M) is fully faithful and (the underlying W ∗-category of) M is
factorial, then B is a factor. Prove that when C is fusion, then this is an if and only if.

Given a W ∗-algebra object A, we expect the standard form L2A and Connes fusion
�A to make sense, and Bim(A) to be a bicommutant category.
Objective: Prove that Bim(A) ∼= EndT (A-Mod), and that it is a bicommutant category.
Objective: Prove that AL

2AA ∈ Bim(A) is irreducible if and only if (the underlying W ∗-
category of) A-Mod is factorial.

Conformal field theory

The c= 1 Virasoro conformal net is the fixed points of the SU(2) level 1 under the
adjoint action of SO(3). This suggests a group-theoretic description of Rep(Vir c=1).
Objective: Prove that Rep(Vir c=1) is equivalent to the category (Hilbω[SU(2)])SO(3) of
SO(3)-equivariant objects of Hilbω[SU(2)], for ω the generator of the relevant H3 group.
Our expectation generalises to other principal W -algebras as follows. Let G be a com-
pact, simple, simply connected, simply laced Lie group of rank r, and let W (g) denote the
c→ r limit of the principal W -algebra associated to G.
Objective: Prove that, for G as above, Rep(W (g)) = (Hilbω[G])Gad , where ω the genera-
tor of the relevant H3 group, and Gad := G/Z(G).
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If A is a conformal net, and if Virc ⊂ A is its Virasoro sub-net, then we expect the
dualisable part of SolVirc(A) to be equivalent to the category of topological defect in the
2D chiral CFT associated to A. Unfortunately, the notion of topological defect in a chiral
CFT has not yet been defined mathematically.
Objective: Given a chiral CFT, define its tensor category of topological defect, and prove
that it is equivalent to the dualisable part of SolVirc(A).
Question: What does the non-dualisable part of SolVirc(A) correspond to physically? (It
should correspond to topological defects that are somehow not allowed to bend...)

Given a rational VOA V , [FRS02] provides a (still conjectural) classification of full
CFTs with chiral algebra V in terms of module categories for Rep(V ). Under that corre-
spondence, the objects of a module category correspond bijectively to boundary condi-
tions of the associated full CFT that respect the given chiral symmetry. Given an arbitrary
conformal net A, not necessarily rational, we expect this story to survive with only minor
modifications.
Objective: For V a unitary VOA that integrates to a conformal net A, and T := Rep(A),
show that unitary full CFTs with chiral algebra V correspond to T -module categories.
We do not expect all module categories to correspond to full CFTs.
Objective: Show that a T -module category M corresponds to a full CFT if and only if for
every T -linear functors F1, F2 : Tabs → M , the map End(F1) � End(F2) → End(F †1 ◦ F2)
extends to End(F1) ⊗̄End(F2).
Objective: Given a T -module category M corresponding to a full CFT, show that the
objects of M correspond bijectively to unitary boundary conditions that respect the given
chiral symmetry.

Let A be a conformal net, let T := Rep(A), and let M be a T -module category. Since
T is braided, there’s a natural map f : T ⊗ Tmop → EndT (M).
Objective: Show that the module category M corresponds to a full CFT iff f restricts to
a map

fabs : (T ⊗ Tmop)abs → EndT (M)abs,

and that one recovers the state space of the full CFT by the formula:

Hfull = f †abs ◦ fabs ∈ EndT⊗Tmop((T ⊗ Tmop)abs) = T ⊗ Tmop.

Objective: Check that for A = Vir c=1, the above recipe recovers the expected full CFT
state spaces.

The central charge is an important invariant of a chiral CFT and it is natural to ask to
what extent the associated bicommutant category remembers that invariant. If the chiral
CFT is rational, the center of the bicommutant category is a modular tensor category that
remembers the central charge mod 8. The framed TQFT associated to the bicommutant
category should further remember the central charge mod 24.
Question: Is the central charge an invariant of bicommutant categories?
Question: Is the central charge modulo 24 an invariant of bicommutant categories?
Is the central charge invariant under Morita equivalence of bicommutant categories?
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Thompson group

Given a conformal net, we expect its category of solitons to always be a bicommutant
category. Conversely, given a bicommutant category T , an absorbing object Ω ∈ T , and
a unitary u : Ω⊗ Ω→ Ω, we can construct a net of von Neumann algebras on the circle.
This net is not Diff(S1)-covariant, but instead covariant with respect to the Thompson
group T ⊂ Homeo(S1). We call such a thing a Thompson net.
Objective: Show that applying the above construction to (unitary ind-completions of) a
unitary fusion category reproduces the Thompson net studied in [Jon17].

We expect bicommutant categories to be equivalent to Thompson nets in the following
precise sense:
Objective: Show that the category of solitons associated to an arbitrary Thompson net
is a bicommutant category. Prove that the composite

{bicommutant categories} → {Thompson nets} → {bicommutant categories}
is the identity (regardless of the choice of unitary u : Ω⊗Ω→ Ω used in the construction).
The bicommutant category associated to Thompson net comes equipped with a distin-
guished absorbing object Ω, and a distinguished isomorphism u : Ω⊗ Ω→ Ω.
Objective: Prove that the composite

{Thompson nets} → {bicommutant categories} → {Thompson nets}
is the identity, provided one uses the u from above .

Ameanability and property (T)

The Fell topology on the category of representations of a locally compact (quantum)
group G is a priori not an invariant of the category, but depends on knowing what G is.
Given a bicommutant category T and an obsorbing object Ω ∈ Tabs, let A := EndT∗(Ω ⊗
Ω). By writing T = Funcln(T∗,Hilb) = Repln(A), we get an intrinsic Fell topology on T ,
which depends only on the structure of T as a W ∗-tensor category.
Objective: Prove that when T comes from a locally compact (quantum) group, then its
intrinsic Fell topology agrees with the usual Fell topology on Rep(G).

The intrinsic Fell topology on a bicommutant category T allows one to talk about weak
containment, hence about ameanability and property (T). Let 1T ∈ T be the unit object,
and ΩT the absorbing object of T . A bicommutant category is ameanable if 1T ≺ ΩT , and
it has Khazdan’s property (T) if 1T ≺ X implies 1T ⊂ X for all X ∈ T .
Objective: Prove that if T = Rep(G) for some locally compact (quantum) group G, then
T is ameanable / has property (T) if and only if the corresponding property holds for G.
Let C be a rigid C∗-tensor category, and let Ĉ be its unitary ind-completion. Ĉ is always
ameanable and always has property (T) in the sense of bicommutant categories.
Objective: Prove that C is ameanable / has property (T) in the sense of [PV15] iff Z(Ĉ)
has the corresponding property in the sense of bicommutant categories.

We expect that every unitary chiral CFT has an associated bicommutant category. If
true, ameanability and property (T) would be notions that make sense for arbitrary unitary
chiral CFTs. Interpreting ‘unitary chiral CFT’ to mean ‘conformal net’, ameanability and
property (T) are certainly notions that make sense for conformal nets.
Objective: Prove that if a conformal net A is such that Rep(A) is both ameanable and
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has property (T), then the conformal net A is rational.
Objective: Prove that ameanaility and property (T) are preserved under finite index ex-
tensions of the conformal net A.

To understand ameanaility and property (T) in conformal field theory, it is imporant to
have examples of non-rational conformal nets that are ameanable, as well as examples
of non-rational conformal nets that have property (T).
Objective: Prove that the Virasoro conformal net Vir c=1 is a non-rational conformal net
which is ameanable.
Objective: Prove that Vir c for c > 1 is not ameanable, and does not have property (T).
Objective: Prove that the conformal nets associated to the principal W -algebras of
higher rank Lie algebras are ameanable when the central charge c is equal to the rank r
of the Lie algebra, and have property (T) when c > r.

3-category

von Neumann algebras and their bimodules form the objects and 1-morphisms of a
2-category. We expect bicommutant categories to similarly assemble into a 3-category.
In Bartels-Douglas-Henriques, it was proven that conformal nets form a 3-category. But
that 3-category is not very well behaved as it is not (visibly) idempotent complete. Bicom-
mutant categories should fix that problem.
Objective: Prove that bicommutant categories and their bimodule categories form the
objects and 1-morphisms of a symmetric monoidal 3-category, and prove that this 3-
category is idempotent complete.
Objective: Prove that the 3-category of conformal nets embeds fully faithfully inside the
3-category of bicommutant categories.

If aW ∗-algebraA acts faithfully on a Hilbert space, thenA and (A′)op are called Morita
equivalent. By analogy, if a bicommutant category T acts faithfully on a module category,
then we call T and (T ′)mop Morita equivalent. This generalises the existing notion of
Morita equivalence for unitary fusion categories.
Objective: Prove that the above notion of Morita equivalence is an equivalence relation
on bicommutant categories.
Objective: Prove that two bicommutant categories are Morita equivalent if and only if
they are isomorphic in the 3-category of bicommutant categories.

It is unclear whether one should expect to be able to classify bicommutant categories
that are invertible up to Morita equivalence.
Question: Can the group of invertible bicommutant categories be computed? Is it gen-
erated by the bicommutant category associated to the E8 level 1 chiral CFT?

TQFT

Given a 3-category, it is important to identify those objects which are 1-dualisable,
those which are 2-dualisable (i.e. fully dualisable), and those which are invertible.
Objective: Prove that a bicommutant category T is 1-dualisable iff the corresponding
Thompson net satisfies the split property, iff End(Ω1) � End(Ω3) → End(Ω1 ⊗ Ω2 ⊗ Ω3)
extends to End(Ω1) ⊗̄End(Ω3), for any absorbing objects Ω1,Ω2,Ω3 ∈ T .
Objective: Prove that a bicommutant category is 2-dualisable iff the corresponding Thomp-
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son net has the property that the four-interval bimodule A1⊗̄A3
(H0)A2⊗̄A4

is dualisable.
Objective: Prove that a bicommutant category is invertible in the 3-category if and only
if the four-interval bimodule is invertible.

Given a connected surface Σ, possibly with boundary, let Γ(Σ) denote the quotient of
Diff(Σ) by the relation of isotopy fixing the boundary. This group is an extension

1→ MCG(Σ)→ Γ(Σ)→ Diff(∂Σ)→ 1 (1)

were MCG(Σ) denotes the mapping class group of Σ rel boundary. In [BDH17], we
showed that for every rational conformal net A, we get projective representations of the
groups Γ(Σ). If A is not rational, we expect the result to survive provided ∂Σ 6= ∅ or
χ(Σ) < 0.
Objective: Given a conformal netA, and a surface Σ 6= S2 or S1×S1, construct projective
representations of Γ(Σ) generalising the construction in [BDH17].
Given a 1-dualizable bicommutant category, an absorbing object Ω, and u : Ω ⊗ Ω ∼= Ω,
we expect a closely analogous picture to emerge. Let us write Γ̃(Σ) for the version of the
above group where Diff(∂Σ) in (1) is replaced by the appropriate Thompson group.
Objective: Given a 1-dualizable bicommutant category T , an isomorphism u : Ω⊗Ω ∼= Ω,
and a surface Σ 6= S2 or S1 × S1, construct projective representations of Γ(Σ).
Objective: Find an expression for the projective cocycle of these representations in terms
of the bicommutant category T .

By a result of Kawahigashi-Longo-Mueger, if a conformal net A has finite index, its
category of representation Rep(A) = Z(Sol(A)) is (the unitary ind-completion) of a uni-
tary modular tensor category.
Objective: Prove that a bicommutant category T is 2-dualisable iff its Drinfel’d center is
the unitary ind-completion of a finite direct sum of unitary modular tensor categories.
Objective: Prove that a bicommutant category is invertible iff its Drinfel’d center is Hilb.

Unitary modular tensor categories are unitary braided fusion categories with trivial
Mueger center, and examples come from Drinfel’d centers of unitary fusion categories.
Objective: Prove that the Drinfel’d center Z1(T ) of a bicommutant category T is a braided
bicommutant category, and that the Mueger center Z2(T ) of a braided bicommutant cat-
egory is a symmetric bicommutant category.
Given a bicommutant category T , let Z(T ) := {z ∈ End(1T ) | z ⊗ 1X = 1X ⊗ z, ∀X ∈ T}.
Objective: Prove that the braiding on the Drinfel’d center Z1(T ) of a bicommutant cate-
gory is non-degenerate in the sense that the Mueger center of Z1(T ) is L∞(Z(T ))-Mod.

Fix a compact connected Lie group G and a level k ∈ H4
+(BG,Z). In [Hen17], we

introduced the category Repk(ΩG) of representations of the based loop group at level k,
and argued that it is what Chern–Simons theory assigns to a point.
Objective: Prove that the bicommutant category Repk(ΩG) is fully dualisable, and thus
admits an associated TQFT by the cobordism hypothesis.
The main piece of evidence for the claim in [Hen17] is that the Drinfel’d center of Repk(ΩG)
is equivalent to (the unitary ind-completion of) the modular tensor category Repk(LG) of
representations of the free loop group. To complete the argument, we would need:
Objective: Prove that for every fully dualisable bicommutant category T , the value of the
associated TQFT on S1 agrees with the Drinfel’d center of T , as braided tensor category.
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