The *576*-fold Bott periodicity of the Majorana fermions

André Henriques

Bott periodicity

topological insulators

classification of

real: period 8

K-theory:

Clifford algebras

 $[0,\mathbb{Z}]$ $[0,\mathbb{Z},0,$ complex: $\mathbb{Z}_2, \mathbb{Z}_2, 0, \mathbb{Z}, 0, 0, 0, \mathbb{Z}$ $\mathbb{Z}_2, \mathbb{Z}_2, 0, \mathbb{Z}, 0, 0, 0, \mathbb{Z}, \mathbb{Z}_2$ real:

K-theory:

It assigns to every space X a sequence of abelian groups $K^0(X)$, $K^1(X)$, $K^2(X)$, ...

Bott periodicity:

complex:

$$K^n(X) = K^{n+2}(X)$$

real:

$$KO^n(X) = KO^{n+8}(X)$$

Elliptic cohomology:

Slogan:

$$EII^n(X) \approx K_{S^1}^n(LX)$$

K-theory is to quantum mechanics as Elliptic cohomology is to quantum field theory

Periodicity:

$$EII^n(X) = EII^{n+576}(X)$$

Abelian Chern-Simons theory

3 dimensional TQFT with action functional
$$S[A] = e^{iCS(A)}$$
 where
$$CS(A) = \frac{1}{4\pi} \int_{M_3} K_{ij} A^i \wedge dA^j \qquad T\text{-connection}$$

• At the *classical level*, abelian Chern-Simons theories are classified by the lattice $\Lambda := \ker(\exp : \mathfrak{t} \to T)$.

• At the quantum level, theories can become equivalent.

Two theories A and B are equivalent if there exists an $\underline{invertible}$ defect D

• At the *quantum level*, theories can become equivalent.

At the classical level, Chern-Simons theories with abelian gauge group T are classified by a lattice $\Lambda = \ker(\exp:\mathfrak{t} \to T).$

At the quantum level, two such theories can become equivalent.

K-theory
period 2 / period 8

Elliptic cohomology period 576

Morita equivalence

Clifford algebras

Spin group

K-theory

period 2 / period 8

 $Fer(n) \approx Fer(n + 576)$

Conjecture

We have $CFT_A \approx CFT_B$ if \exists an invertible defect

Fer(n):

$$[\psi_i(z), \psi_j(w)]_+ = \delta(z - w)\delta_{ij}$$

$$c = \frac{n}{2}$$
 $i, j = 1 \dots n$

$$Fer(2) \leftrightarrow CS \text{ for } U(1)$$

 $Fer(2n) \leftrightarrow CS \text{ for } U(1)^n$
 $Fer(576) \leftrightarrow CS \text{ for } U(1)^{288}$

the space X for which we want to compute KO(X)

(Picture by Robert Bruner)

To compute Ell(X), proceed identically...

period = 576

Clifford algebras

$$\textit{Cliff}(\textit{n}) = \textit{Cliff}(1)^{\otimes \textit{n}} = \langle \textit{e}_1, \ldots, \textit{e}_\textit{n} \mid \textit{e}_\textit{i}^2 = 1, \textit{e}_\textit{i} \textit{e}_\textit{j} = -\textit{e}_\textit{j} \textit{e}_\textit{i} \rangle$$

Bott:
$$Cliff_{\mathbb{R}}(n) \approx_{\mathsf{M}} Cliff_{\mathbb{R}}(n+8)$$

 $Cliff_{\mathbb{R}}(n+8)$ is equivalent to matrices of size 16×16 with entries in $Cliff_{\mathbb{R}}(n)$.

Morita equivalence

$$A \approx_{\mathsf{M}} Mat_{k \times k}(A)$$

Proof of Bott periodicity for Clifford algebras

Cliff(1) =
$$\langle e \mid e^2 = 1 \rangle$$

Cliff(n) = Cliff(1) $^{\otimes n}$
Cliff(-1) = $\langle f \mid f^2 = -1 \rangle$
Cliff(-n) = Cliff(-1) $^{\otimes n}$

Cliff(1) and Cliff(-1) are each other's inverse up to $\approx_{\scriptscriptstyle M}$:

$$\left\{egin{array}{ll} extit{Cliff}(1)\otimes extit{Cliff}(-1) &=& extit{Mat}_{2 imes 2}(\mathbb{R}) \ &e\otimes 1\mapsto egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} &1\otimes f\mapsto egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \end{array}
ight.$$

QED

Proof of Bott periodicity for Clifford algebras

$$Cliff(1) = \langle e \mid e^2 = 1 \rangle$$

 $Cliff(n) = Cliff(1)^{\otimes n}$
 $Cliff(-1) = \langle f \mid f^2 = -1 \rangle$
 $Cliff(-n) = Cliff(-1)^{\otimes n}$

$$Cliff(n) \approx_{\scriptscriptstyle{\mathsf{M}}} Cliff(n+8)$$

We have
$$\mathbb{H} \otimes \textit{Cliff}(1) = \textit{Cliff}(-3)$$
: $i \otimes e \mapsto f_1$
 $j \otimes e \mapsto f_2$
and
 $k \otimes e \mapsto f_3$
 $\mathbb{H} \otimes \textit{Cliff}(-1) = \textit{Cliff}(3)$: $i \otimes f \mapsto e_1$
 $j \otimes f \mapsto e_2$
 $k \otimes f \mapsto e_3$ QED

Proof of Bott periodicity for Clifford algebras

$$Cliff(1) = \langle e \mid e^2 = 1 \rangle$$
 $Cliff(n) = Cliff(1)^{\otimes n}$
 $Cliff(-1) = \langle f \mid f^2 = -1 \rangle$
 $Cliff(-n) = Cliff(-1)^{\otimes n}$

$$Cliff(n) \approx_{\scriptscriptstyle{\mathsf{M}}} Cliff(n+8)$$

$$Cliff(-1) \approx_{\mathsf{M}} Cliff(1)^{\otimes -1}$$

 $\mathbb{H} \otimes Cliff(1) = Cliff(-3)$
 $\mathbb{H} \otimes Cliff(-1) = Cliff(3)$

The String group

The String group

The orthogonal group acts of Fer(n) by permuting the ψ_i 's.

Every $g \in O(n)$ yields a *defect line* where the ψ_i are discontinuous and transform under g.

Fer(n)
$$Per(n)$$
 $Per(n)$

Theorem: (H.–Douglas; Janssens)

$$\left\{ \left(g,\phi\right) \,\middle|\, \begin{array}{l} g \in O(n), \\ \phi \text{ is a twist field:} \end{array} \right. \qquad \phi_{\begin{array}{c} Fer(n) \\ D_g \end{array}}^{}$$

is a model for the string group.

Upon replacing

 $Fer(n) \rightarrow Cliff(n)$ 'defect' → 'bimodule' 'field' \rightarrow 'linear map' one gets a model for the Spin group.

Theorem: (H.–Douglas; Janssens)

$$\Big\{ \big(g, \phi \big) \, \Big| \, \begin{array}{l} g \in O(n), \\ \phi \text{ is a twist field:} \end{array}$$

 $\phi_{lackbox{ iny Fer(n)}}^{lackbox{ iny Fer(n)}}$

is a model for the string group.

Upon replacing

 $Fer(n) \rightarrow Cliff(n)$ 'defect' \rightarrow 'bimodule' 'field' \rightarrow 'linear map' one gets a model for the Spin group.