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Subfactors arising from positive energy
representations of some infinite—dimensional groups

Preliminary uotes by Antony WASSERMANN

Abstract — To each irreducible positive energy representation of the loop group of a simple compact Lie
group we associate canonically an irreducible subfactor of the hyperfinite factor R, of Type 11, . These
are parametrised by the same data as the Jones—Wenzi subfactors of the hyperfimie 11, factor R and we
conjecture that the loop group subfactors are tensor products of these subfactors with A, We also define
subfactors of R, for each discrete series representation of Diff £ and conjecture that these have finte
index We give preliminary evidence supporting these conjectures. In particular the subfactors for LSU(2)
at level 2 or for Diff 57 with central charge 1/2 have index either 1 or 2, and those for LSU{Z) at level 4
or LS4} at level 2 have finite index

. INTRODUCTION; — Quantum mechanics and group represcmalmn theory were two
of the main reasons for von Neumann to invent rings of operators in 1934. Quantum
field theory was developed over the next fifty years in a number of different ways —
constructive, axiomatic, algebraic and through functional integrals. In the last ten years
two-dimensional conformally invariant theories have become objects of interest in hoth
mathematics and physics. They are being studied from many diflerent points of view,
Our starting point will be their connection with positive energy representations of certain
infinite-dimensional groups. We hope to use von Neumann algebras and the theory of
subfactors to understand some aspects of conformal field theory.

In this note we shall be concerned with the connections between three different areas
in mathematics and physics: exactly solvable lattice models in statistical mechanics,
conformal field theory in two space-time dimensions and the theory of subfactors. For
some time it has been known that the ‘Yang-Baxter® braiding in critical lattice models
can be used to define subfactors. On the other hand the continuum limit of a eritical
statistical mechanical system should provide a conformal field theory (CFT) with the
monodromy of a chiral part of the CFT reproducing the braiding associated to the original
system. This link has not been established so far, except in a few special cases. However
Tsuchiya and Kanie [TK] discovered by direct computation that the monodromy for
the Wess-Zumino-Witten models for SU{2) (and more generally SU({A")) agreed with
the braiding of restricted solid~on-solid models. a class of critical models studied by
Jimbo, Miwa, et al. (For SU(2) these are the Andrews-Baxter-Forrester models and the
subfactors are those originally found in [Jones]). So it was natural to ask whether there
was a more fundamental way of producing subfactors from a conformal field theory that
did not directly invoke the braiding.

Such a construction of subfactors is obtained by considering localised fields, in our case
the von Neumann algebras generated by local subgroups of loop groups or diffeomarphisin
groups. Algebraic quantum field theory ({DHR], [FRS}) provide a framework for studying
abstract local algebras with ‘Haag duality’ playing a pivotal role. We have had to adapt
this theory to our concrete models.
theorems. An important aspect of our approach, which marks a departure from algebraic
QFT, is that we may crucial use of interrelationships between different theories. This
stems from the natural hierarchy of CFT. Using a key result of Takesaki [T} relating
modular groups of von Neumann algebras and lheu‘ subalgebras, we may descend from
relatively simple theories, such as free field (heones to'more complicated subtheories.

2. JONES-WENZL.SUBFACTORS AND SOLVABLE LATTICE MODELS. — It has been known
for some time that subfactors could very naturally be associated with certain statistical
mechanical models. More accurately: the reverse happened: in {Jones] it was shown
that all subfactors of index less than four canonically contain an algebra gencrated by
projections ¢; satisfving eje;jq €,7€; and»‘e;q = eje; (i — jl > 1), where r=! equals the
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index. This index must have the form 4 cos*(7/x) for & = 3.4,5.... It was only later
realised these ¢;'s were the transfer matrices for the Andrews-Baxter-Forrester model.
More significantly for us, the ¢;’s themnselves give rise to a subfactor with the same index
simply by taking the subalgebra obtained by omitting the first generator ¢;.

In general exactly solvable lattice models come equipped with R-matrices R € GL{V' @
V) and density matrices @ € End(}’). The R-matrix satisfies the braid relation
RyRaRy = RyRy Ry in GL(V @V & 17), a version of the quantum Yang-Baxter equation.
(Here and below R; lives in the i and 7 + 1 copies of 1".) Let End(V')®* be the algebra
generated by tensors r; @ 72 @ - -- with z; = 1 eventually. The map 7{0;) = R; defines
a representation of the infinite braid group Be, in End(1')® and the tensor powers of
a define a form on End(1V)®% which restricts 1o a trace tr on #{CB.. ). These have the
properties: (a) dimm(CB,) < oo for all n; (b} tr(weE') = tr(witr(eF') for w € B,.
Typically the models and their matrices R and a depend on one or more parameters.
For special choices of parameter, usually roots of unity, the algebras #(CB5,,) fail to be
semisimple. Nevertheless for these exceptional values tr defines a positive trace on CBy
So we may construct L2(Bq,, tr), the Hilbert space completion of CBy with inner prod-
uct tr(ab™!). Let 7 be the represenl‘z\ation of B by left translation. As Wenzl has shown,
this has a very strong finiteness property: (¢) dimZ(x{(CB,)) is uniformly bounded. The
shift p given by p(e;) = e,y induces an endomorphism of the hyperfinite type 1) factor
M = 7(CBy ) into itsell. Starting with the inclusion N = p"(M)-C M, Wenzl obtains
his subfactors by taking the reduction Np C pAfp by minimal projections p € N' N A.

The specific R-matrices used are those coming from the identity representations of
quantum groups at roots of unity; they probably arise from the restricted solid-on-
solid models of Jimbo et al. Data about these subfactors is encoded in Ko(7(CBqa))
which has a natural multiplication making it a ‘fusion algebra’ [GW]. These subfactors
can be regarded as quantum versions of the subfactors obtained from classical invariant
theory. Taking the product type action of a compact group G C GL{V) on EndV®®,
one obtains a factor from the fixed point algebra and the subfactor from the shift and
the fusion algebra is roughly R(G). The Jones-\Wenzl subfactors correspond to the fixed
point algebra of a quantum deformation of G with the shift. They are usually described
by tangle algebras and their study is part of quamum invariant theory.

3. POSITIVE ENERGY REPRESENTATIONS — Let C, be a ‘connected Mmple commcr Lie
group. The loop group LG consists of all smooth maps from the circle’G and the group
of orientation preserving diffeomorphisms Dif[{S') acts by automorphisms on LG. A

positivesrepresentation is a homomorphism LG — PU(H) which extends to LG xRot(S?)

in such a way that the energy operator. the infinitesimal generator Lo the rotation group . .,

Rot(S!), is positive. The central extension U(H) of PU(H) by T induces a central
extension LG of LG which is characterised by a positive integer ( called the level If H
is irreducible, the eigenspaces for Rot{S!) are finite-dimensional and invariant under the
subgroup G of constant loeps. In particular the lowesi. energy subspace H* = V' C H
is an irreducible G-module. The pair (£, V') uniquely determines the representation and
for a given level only finitely many V' in G can occur. Any positive energy representation
extends uniquely to LG x Diff (S}, so that it is invariant under reparametrisation. The
resulting projective representation of Diff(S') determines a central extension of Diff(S!).
This is characterised on the infinitesimal level by a number ¢ > 0. the central charge,
and globally by some finite covering of the circle (a rational number 4 € [0,1)). Positive
energy representations of Diff §7 with ¢ € (0,1) are also uniquely specified by the lowest
eigenvalue (i Qﬁﬁlof Lo (which is simple). The possible values for ¢ in this range are
c =1=6/(m+ 2)(m +3) (m 2> 1) and the corresponding values of h are given by

= [((m + 3)p = (m + 2)¢)* - l]/4(m + 2)(m + 3) where 1 < p < /qlem ¥ I T oMris
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a positive energy repres'entalion and : — 2Lo denotes its restriction to (the finite cover
of ) the circle group, then zL¢ can bhe analytically continued to the complex plane. When
|z} < 1, the operators =Lv is a trace class contraction and for 0 < ¢ < 1, we have
Tr{qle) ~ a(ﬂ')e\p(-—]/l?]ogq) as ¢ 1 1 where a(7) > O is the awmplnhc dimension of

7 [R\W]. e

“IfHisa subgroup of G, not necessarily semisimple, and 7 is an irreducible positive
energy representation of LG on #, then the restriction of 7 to LH is also of positive
energy so breaks up as direct sum of irreducibles for a given cocycle of LH. H there
are only finitely many summands, we have a conformal inclusion. This can only occur
when the central charges cg and cy for G and H are equal, and then the level of =
must be 1. The complete list of all- conformal inclusions is known ([Bais-Bouwknegt].
[Qchellel\env\'\arnf-r]) together with almost all the corresponding branching rules. In

particular when G is simply Jaced with maximal torus T, the inclusion LT C LG at level gy 1ot o

one is conformal and the restrictions to LT remain irreducible and mequnalcnl In the

next section we use Fermi-Dirac fields to understand these representations.
discuss other examples when we need them.

When the inclusion is not conformal, then we can obtain new representations of DT (S")
on the multiplicity spaces of LH following [GKO] (see also Lemma 13.9 in [Segal]). This
cosct_consiruction yields representations with central charge ¢ = ¢ — ¢y . Indeed we may
write H = @H; @ K; where the H,’s are distinct irreducible representations of LH and
the K;'s are multiplicity spaces. So #(LH) = @C¢& B(K,). Now fixing a diffeomorphisin
J. we suppose it acts as Ad({;) on /{ and Ad(V;) on each H;. Let ¥y =&\;@on H.
Then since LH C LG. Ad(Uy) and Ad(V]) satisly Ad(Uya(h)U]) = Ad(Vym(h)V[) for
all h € LH. Thus Wy = V7 Uy liesin 7(LH)". The restrictions of Ad{(147) 1o each A} are
projective representations of Diff (S!). We shall only use the case SU(2)n-, x SU(2); D
SU(2)n x Diff(S!), in this paper.

Given all the level one representations, all the level € represemations of LG can be
obtained by decomposing their {~fold tensor products. The level one representations can
be obtained by two explicit ‘free field” models when G is simply laced. On the one hand
the Cliflord algebra and free fermions give rise to the level one representations of the
unitary and orthogonal groups. On the other hand when G is simply laced and T C G
is a maximal torus, LT C LG is a conformal inclusion and the level one representations
of LG restrict to irreducible representations of LT But these are essentially described
by free bosons and the extension to LG is obtained at the Lie algebra level by means of
vertex operators {Frenkel~Kac-Segal [GO]).

— Let 7 : LG — PU(H) be a positive
re Joop group LG on the Hilbert space H. 1f [ is an
open interval on Lhe circle, we let the L; G be the (normal) subgroup of LG consisting of
loops equal to the identity outside J. Let J® denote the open interval complementary to 7. -
Then if G is simply connected. m(4; ) (
for vy € L;G and v; € L;<G. Thus the von Neumann algebra N = #(L;G)"” generated on
H by L;G is contained in M = 7(L;-G)', the commutant of L;<G on H. We show
below that N and A are hyperfinite type 111; factors, so that the inclusion N C M gives
a subfactor. Haag duality is said to hold when N = M. Thus the subfactor measures the
failure of Haag duality tn non-vacuum sectors. A similar construction applies to discrete
series representations of Diff S'. The réle of L;G is played by Diff;(§'), the subgroup of
diffeomorphisms fixing points outside /. In general we conjecture that a positive energy
representation 7 should lead to a subfactor of R; ofindex [o{x)/a(m()]* where g is the
vacuum representation. More specifically we conjecture that the loop group subfactors,
which are labelled by the same data as Jones-Wenzl subfactors, are in fact obtained from
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them by tensoring with the hyperfinite Il facior.
To study these subfactors it has been uscful 1o introduce another class of subfactors
¢s<ocian‘d with conformd] or GKO imlusion: For P\dlnpl( if 7 is a level one pocmxe

‘r(L/G " gives a suhhclor These are in sonie sense “square rools of the clast above
applying the basic construction of [Jones] to them we recapture the first type of subfactor.
Note that for a product G = Gy x Gy, we have 7 @ pia{j(LiG))" = m(Li;G1)"” &
ma(LyGa) where j 0 LG ~— LGy x LGy is the map j(f)(:) = (plf(:),)r_,f(:)) determined

by the projections p; : G — Gi.

). TOMITA-TAKESAKI THUEORY. — Suppose that the vector & in I is cyclic for both the
von Neumann algebra and its conunutant Af’. The fundamental operators S and F
of Tomita are defined as the closures of the conjugate linear operators S(z€) = z°¢ on
A& and F(y€) = y € on M'E. These operdtorc are each other’s adjoints and S has polar
decomposition S = JAY? where A = 5" Sand Jisa conjugate linear isometry satisfying

= I. Moreover conjugation hy A" dcﬁncs one-parameter automorphism groups e, of
hoth M and A’ and we have M’ = JAJ. These results apply also when H and Af are
Z,-graded and € is even. The Nlcin transformation K on H is defined to be 1 and 7 on
the even and odd parts of H respectively: the graded commutant of M is just NAM'K -1

The Kubo-Martin-Schwinger condition is useful for verifving that a given o, is the |
modular automorphism group of a state o1 if b is a vector in A for which t — o,(b) has |
an extension 1o an entire function then one just has to check that 2(ab) = »{a; (b)a) for o
a dense set of a in M. )

For descending to subtheories, we shall need an additional result of Takesaki [T]. Let (
N be a von Neumann subalgebra of Af invariant under ¢, Then o, and J restrict to
the moedular automorphism group and conjugation operator of N for & on the closure (
Hy of NE. Moreover H; = H if and only if M = N. Finally there is a unique normal
conditional expectation of M onto N consistent with ¢, and preserving the vector state.

In practice the verification that a vector is cyclic can either he seen directly or through
a simple version of the Reehi-Schlicder theotem. Let U, be a unitary representation of
the circle group on I of positive energy and let A be a von Neumann algebra acting on
H such that the operators U, XUT (X € M,z € 5') act irreducibly on H. If £ is any
eigenvector of U/, and N is a von Neumann algehra containing U, MU for = sufliciently
close to 1, then £ is cyclic for N.

Finally we recall that if the modular group for € is ergodic on A, then M must be a
factor of type I1I; [Connes]; this will be the case whenever £ is the only vector in kerA.

AS. — If H is complex Hilbert space, CHff([) is the Za-
graded C* algebra generated by operators a(f) satisfying the canonical anticommutation
relations (CAR) [a(f), a(g)}4+ = 0 and {a(f),alg) ]+ = ([, g)]. (a is thus a complex fermi
field.) Il 0 < A < I is an operator on H. we get a quasifree factor state ¢4 on CAR(H)
through the formula: @a(a{gn)” - -alg:) a(fy)- - a(fm)) = bmn det({4fi, g;)). @a is
pure iff 4 is a projection. Two states 64 and ép belong to the same representation if
and only if 4 — B is Hilbert-Schmidt.

The unitary group U(H) acts functorially by automorphisms on Cliffp(#). If P has
infinite rank and corank (i.e. is in general position), the restricted unitary group

Ures(H) = {U € U(H) : [P,U]Hilbert-Schmidt}

is the subgroup of U(H) aking ¢p onio equivalent states. If Hp is the Zy—graded
Hilbert space obtained by the GNS construction from ép, then there is a unigue projec-
tive representation of 7 : Ures( H) — PU(Hp) compatible with the action of CAR(H).
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The Hilbert space Hp is realised lhroggh the ‘Dirac sca’ construction of fermionic Fock
space. We take Hp = M(PH % (Pw H)*). The action of a(f) is the sum of. exterior
multiplication by P f on the first component (creation) and contraction by P{L:f on the
second component (annihilation). The vacuum vector § gives the state pp.

The map Ures(H) — PU(Hp) is continuous for the topology on U,es( H) given by the
strong operator topology together with the metric topology d(U. V') = |[[P. U7 ~ V]j|2.
Let a be the conjugate-linear *~automorphism of CIifi{ /) defined by a{a(f)) = a{f)".
Note that if U € U(H} is such that UPU™ = P* (inodulo Hilbert~Schmidt operators),
then the conjugate-linear *~automorphism o - oy extends by continuity to B{Hp). It is
therefore implemented by an essentially unique antiunitary on Hp.

We shall need the following version of Haag-Araki duality, implicit in the literature.
Let @ be a projection in f such that P and @ are in general position, i.e. neither @
nor @+ meet P or PL. Then the graded commutant B of A = CAR(QH)" in Hp is
CAR(Q* H)". The modular automorphism group corresponding to £p is implemented by
Clff( H'*) where A = QPQ/QP*Q+QL PLQL/Q* PQL. Both A4 and B are isomorphic

15 Ty as U, = Cliff(A'") is ergodic on 4 and B.

Firstly we show that the vacuum vector Q is cyclic for CHff(QH), i.e. the closure Hy
of np(CHff(QH))? is Hp. Assume by induction that forms of degree N or less lie in
Mo, and take w an N-form and f € QH. Then a(f)w = Pf Aw modulo AN and
a(f)w = (P L f)" Aw moduio A%, and therefore Pf Aw, (PLf)Aw € Hy. We get
any N 4+ I-form using the density of PQH and PLQH in PH and P+ H. Applying this
result to @1, we see that Q is also separating.

We nest check that ¢, = ADU, satisfies the KMS condition for the vacuum state
restricted to CHIT{QH). Note that ¢p restricts 1o ¢4 where 4 = QPQ. f f € H
is an entire vector for Uy, then o;(a(f)) = «(Bf) where B = A/] — A. Let M, be the
weakly dense *~subalgebra generated by the productsz = a(gn )" -+ -a{g1) a(f1) - a{fm)
with the fi's and g;’s are entire. Applying the anticommutation relations, we obtain
palza(f)) = ~¢ala(f)z) + Fa(za(4711)). Replacing f by (1 — A7')f ([ is entire), we
obtain g4(ra(f)) = ¢ala(Bf)z) = ¢aloi(a([))z) where B = 4/1 — 4. But the a(f)’s
generate Ay, so the modular condition follows.

The proof may be completed in two ways. For the first we note that
7p (CIE(QL H))! has Q as a cyclic separating vector and ¢y as modular group. Since it
contains 7p(CHA(QL H))”, which is invariant under ¢, and cyclic, we obtain equality by
Takesaki's theorem. For the second more direct proof, we use the unbounded operator
T:Pf—iP+f Ptgw iPgfor f € QH,qg € Q*H. Then T has polar decomposition
UA and, if f € QH isentire. we have Ja(f)Q = SA~1a(/)Q = ia(l7 )" Q. Since I/ f lies
in QY H, a(U[)" lies in the graded commutant. Since the a(f)’s generate Cliff (QH ), we
obtain J = A - CliffU where A" is the Klein transformation and the result follows.

We explain T more carefully (we shall need it below). The Hilbert space PH @ P+ H
can be identified with H. The subspace QH then defines the graph of a closed densely

defined operator from PQH to PLQH, taking Pf to P*f for f € QH. Using this

observation we define a closed densely defined operator T(P, Q) on H by sending Pf to
iPLf for f € @H and sending P f 10 iPf for [ € Q* H. This operator is self~adjoint
and its graph in # & H has the following projection in M.(B(H)):
PQP+ PLQLPL  i(PQ-QP)
QP - PQ) PLQPL 4+ PQLP

From this expression, we see immediately that T(P,Q) = ~T(Q. P) = —-T(P*+.Q). Note
that TP = PLT and TQ = Q*T. Let T = U - AY/? be the polar decomposition of
T. Then UPU* = P+, UP*U"” = P, etc. Moreover A = T°T = QPQ/QP'Q &
QPLQ/Q PQ*.

These results extend easily to real fermions (sce [A]). The sell dual CAR algebra
Cliff (11} is defined for a complex Hilbert space } with a conjugate linear involution TI".
It is generated by operators ¢ f) subject to o(I'f) = a(f)" and [u(f),a(_q)"]+ = (f.q)].
If P and Q are projections in general position such that TPT = P* and I'Q = QT . then
we define Hp = A(PH) with a(f) acting by the sum of exterior multiplication by Pf
and contraction by P(I'f)*. The von Neumann algebras generated by Cliffa (QH) and
Cliff 3 {Q* 1) are each others quasicommutiants and the modular groups are implemented
by the same operators.

i NTTS DR BRI EQR EERAMIONS ON -— Let H =

. . - . ~ o 5 5 B
L*(5§1Y&V where V' is a finite-dimensional inner product space. Let P be the orthogonal i)\Y;\.\J\‘W, .
Aprhinn

projection onto H?(5')®V, the Hardy space of boundary values of holomorphic (vector-

valued) functions on the disc and let @ be the orthogonal projection onto L*(J)®V where Lo Gl

I is the upper half of the circle. P and @ are in general position, since no non-zero holo-
morphic or antiholomorphic function can have boundary values vanishing in an interval.
We compute the modular group in this case in two ways, using 2 x 2 matrices and by
analytic continuation. Both calculations are at the prequantised level using the formula

Mébius transformation group on the circle that fixes =1 and modular conjugation to the

at, versi -1

orientation reversing reflection z =z

(1) The unitary equivalence between L?(T) and L?(R) induced by the Cayley transform
zw— i{z+1)/(z~1) carries the Mobius flow on the circle fixing £ 1 onto the scaling action
of R} on R fixing @ (and oc). It also carries @ onto the characteristic function of the
positive half-line and P onto projection onto the Hardy space of boundary values of
holomorphic functions on the upper half plane. If V' : L*(R) — L*(R) denotes the
Fourier transform, then P = VQV™.

Let A = QPQ/QPLQ: we have to compute A''. For f € L*(R) define f» € L%(R)
by f1(t) = €'/? f(xke') and set W(f) = (f4.f-). Thus I¥ is an unitary between L2(R)
and L*(R) @ L*(R). For any operator T on L*(R) let 7, = WTH ™™ be its image under
(1) g) The scaling action of R} on L*(R) is given

/
by(#(s)f)(z) = /5 - f{sz) and becones the (diagonal) multiplication operator for s'*
under W. Because this representation has muliplicity two, the von Neumann algebra of
multiplication operators A has commutant M»(A). In particular P lies in My(A4). since P
commutes with 7(s). Similarly, since Un(s)U” = 7(s™}), we find that Usm(f)U; = m([}
for any diagonal multiplication operator m(f). Hence U](J ® I} commutes with A4

and therefore lies in AMo(A4). So U, = A(J @ T) where M = (Z Z) € Ma(A) and
1(z) = f(-2).
The coefficients of A can be caleulated by comparing WU/ f and W' f when [ is one

of the test functions exp(—z2/2) or zexp(—2%/2). We find ¢ = d = (u/Ju + iv/Jv)/2
and b = ¢ = (u/Ju ~ iv/Jv)/2 where u(r) = 237+ P(dir + 1)/2v27 and v(z) =

2 -
~24T+iT(diz + 3)/2V25. Now P, = U,Q,U; = MQM™ = ('“' o ) So A =

the transform W. Clearly @, =

et ef?
QPQ/QPLQ under W is multiplication by Jal*/|c|? on the first copy of L*(R). Using
the functional equation I'(z)I{1 = z) = = cosec 7z, we ohtain Ja|* = ;7;:'—}_—7; Since
la]? + le|? = 1, we find la]?/le]® = ¢**7 so that AY is multiplication by exp(2wiz) on the
range of @,. Hence on L¥(R.), A™ = m{exp 2mt). “
{(2) For f € L¥T) define (V{1)f)(2) = (512 + /)" flerz + 5¢/5¢2 + ¢,) where s, =
sinht and ¢, = cosh?. We must show that A% = V(xt) on L*{]). Let H be the self-
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adjoint generator of V(t), so that V(1) = exp(iHt) and let C be the unitary (C'f)(z) =

--1j ") Furthermore let 7 : QPH — Q* PH be the closed densely (h fined operator

TQS) = iQ* f for f € PH. It suffices to show that T = C - V'(2%i) = C -exp(=27H).
The subspace D = {Qf : f = Fls: with F entire} is a core for T. Therefore it suffices
1o check that D lies in the domain of V'(—wi/2) and agrees with C-V(—ix/2) there. But
for —3n/4 < Imw < /4, gulz) = ,\1(:)(5.,,: + ¢y )" VF €z + 84 /52 + cu) defines an
clement of L2(I). The map u — g, is (weakly) holomorphic by Morera's theorem and
satisfies gr = U(1)Q/. So by the spectral theorem. Q f lies in the domain of V'(—i7/2) and
V=it /DQS = goinjz = —iQCS. Hence T(Q[) = iQ* f = i(CQC) = CV{-in/)QJ.
] . Eikll — Let Iy and I be subintervais of
the circle ‘whose closures are duomt so that Lhe\ are separated on either side by open
intervals, say J; and Ja. Let @, and Q2 be the projections given by the characteristic
functions of I} and /> and let Q@ = @, + Q2. Let us start by observing that @; PQ+ must
be Iilbert~Schmidt (even trace—class). Indeed let f; and f» be smooth functions with
disjoint support such that fy = 1 on I;. Then since f) fo = 0, we have

@Q1PQ2 = Qi(fs Pf)Qx = Qi h]P. f2)Q

which is Hilbert-Schmidt because [P, f5] already is. Thus on the CAR algebra of J =
11U I, ép induces the state 6gpg. But, modulo the Hilbert-Schmidt operators. Q PQ
agrees with @, PQ; + Q@2 PQ>. Since the CAR algebra of 7 acts cyclically, it follows that
the restricted representation is unitarily equivalent to the graded tensor product of the
restrictions of ¢p to the CAR algebras of /1 and I» {cf [Buchholz; CMP 36]. [Summers;

CMP 86)).

4 S E £ — For f =Y anz" in C% = C=(S5') & End(})
we deﬁne the Sobo]e\ 1/1 norm [|f[[1/-, by ||j'[|”., = 3, Un] + 1){an|* and the corre-
sponding inner product by (f.g);/2. Sobolev space L”_7 = Ll/._,(S Y& End(\ ) is the
corresponding Hilbert space completion. Note that if f € C™(S!) with f(z) = 3 a,:",
then we have the crucial identity: [J[P, m{/)}ll2 = T Inllaa]? = ”f||l/., - Hf‘[-, where P is
the Hardy space projection and m(f) is the mulnphcatlon operator of f.

For any finite set .4 C S! let €% denote the subspace of maps in C™ vanishing to
infinite order on 4. We claim that any map in C™ is a Sobolev limit of a sequence of
uniformly bounded functions in €4, In fact, by classical results of Shilov—Whitney
on closed ideals (cf [Malgrange]), C™* is dense in C!#, the ideal in C' of functions
vanishing to first order on A (alternatively this may be checked locally by applying
the Stone-Weierstrass theorem to first derivatives). So we need only approximate by
functions in C'A. Let an(z) = Imz¥/n and bn(2) = fuoiyn(2)/ Jamijn(1) where [, (1) =

Okp1T ¥Rez¥/klog k. Then an(1) = 0 = b/,(1) and o’ (1) =1 = b,(1); moreover both a, _

and b, are uniformly bounded but tend to zero in L”, Using a partition of unity, we
obtain a similar sequence with support near a for each a € A. The result follows.

Let G be any connected closed subgroup of U(V ) with Lie algebra gin the skew-adjoint
matrices. So Lg and LG lie in C®(S') ® End(V). Let LAG be the normal subgroup of
LG of loops g(=) satisfving g(a) = 1, g{")(a) = G for all ¢ € 4. We show that LAG is
dense in LG for the Sobolev metric.

The exponential map f »— e/ takes skew~-adjoint valued functions into unitary ones and
is continuous at 0: for [|[m(ef), P)ll2 < lIlm(f), P)ll2, since for example ¢/ Pe=/ — P =
fol efY([f,Plle=/tdl. Now let J € LG. Using the b,’s we can find X, € La such
that exp(Xa(a)) = f(a) (a € A4) and [|Xsllyy2 — 0. Then z, = fe=Xn — f (in the
Sobolev metric). Hence, taking f; = z, for n large. we have approximated f by f; with
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Jila) = 1 for all @ € 4. Using the a,'s we can find ¥, € Lga with H),,H,/w — 0 and
such that Y, (a) = 0 . Y, of the form /(:) @ Y near a. and Y} (@) = fi(a)" 1 fi(a) for ali
a€ A Then yn = fre7" — f1. Soif fo =y for n large, we have approximated /, by
Jo with fo{a) = 1, fala) = 0 for @ € A. Now we choose Z € Lg such that f, = €Z in
a neighbourhood of A4 with Z(a) = Z'(a) = 0 on 1. We can find Z, € La \amshmg 1o
infinite order on A such atht Z, — Z in the C! norm. Then ¢Z* — ¢Z in the C! and
hience the Sobolev metric. So z, = Jae"%e%n — fo. Thus for large n, f3 = 2, Is a good
approximation to fo in LAG.

10. THE QUARK MODEL. — Let H = L*(S')@V and let P be thr projection onto Hardy
slmmloop group LU/(V) may be identified with the unitary group of
the algebra C°(S') @ End(V). A acts on /by multiplication and commules with P
modulo the Hilbert-Schmidt operators by the well known Toeplitz property. So LU(n)
lies in Uses(H ). Diff S also acts on H with image lying in Uy ( H) (see [PSegal], [Segal])
The corresponding projective representation of LU (V) » Diff ' on the Fock space for
P is called the basic (level one) representation. It is alraedy irreducible when restricted
to LT, where T is a maximal torus of U{V}. If G is a closed subgroup of U(17), we get
a represntation of LG by restriction, in general with a level  higher than one {({ = 1 for

SU(V)). All the irreducible represenlatlons of level ( will appear in thls case.
‘{Q«(J_& certrret [(';Sll““’\

_ . BosoNs AND THE Fles M — The group LT is thie dxrecl product of the discrete
5roup/— Hom(S ) dl]d (he ldenm\ component (LT)?. The fermionic representdtlon
can be realised in a completely different way using this observation. In fact, using the
Mackey machine, any irreducible positive energy representation (7, H) of LT is induced
from a positive energy irreducible representation (mo, Ho) of (LT)?. The representation
will be on the Hilbert space H @(*(A) and will involve the 2—cocycle on A x A determined
by the restriction of 7. Note that since (LT)® = exp Lt where tis the Lie algebra of t,
we are really talking about representations of an infinite Heisenberg group (i.e. the Weyl
formulation of the canonical commutation relations). We recall some facts about the

generalised Stone-von Neumann theorem.

Let V' denote the real vector space C™ (S, R) with non-degencrate symplectic form
S(f,9) = [ f'g (weinsist [ [ = 0to get rid of zero modes). We consider projective repre-
sentations f +— U(f) = exp(i¢([f}) for which U(f)U(g) = exp{—=iS(f.a))l'(f + ¢) which
liave positive energy in an obvious sense (in fact, we need only demand the strong conti-
nuity of one parameter subgroups but this is technically harder). The generalised Stone-
von Neumann theorem asserts that there is a unique such representation on bosonic Fock
space. As observed in [Araki-Woods, JMP4], this representation is continuous for the
norin defined by an appropriate inner product on V. To describe this inner product we
must effectively polarise V' into odd and even parts: a function f is even if f(T) = f(z)
and odd if f{T) = —f(s).

We make the transition from the symplectic point of view to the Hilbert space point
of view in the usual way. Indeed suppose that V' is a real vector space with a non-
degenerate symplectic form S and a given polarisation. So we assume that there for
the weak topology defined by S, there is a total set of vectors p;, ¢; (i > 1) satisfying
S(pi,q:) = &5, S(pi,p;} = 0 and S(g5,9;) = 0. Let P and @ be the (algebraic) inner
product spaces with orthonormal hases (p;) and (g;) respectively and identify P and Q
by the map J(p;} = —qi, J(¢:) = pi. Then S((p,¢).(p'.¢')} = (9.9) — (p.q'). (In other
words Vo = P @ JP makes 1y into complex Hilbert space Pc with complex structure J
and S(£,n) = Im(£, ).} Then defining V'(p) = U(Jp), we obtain the more standard form
of the CCR, U(N)V(g) = e "V (g)U(]), for .9 € P. As Araki and Woods show. the

Fock space representations U and V of P are strongly continuous when P has the inner
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product norm and extend by continuity to the Hilbert space completion P of P. There
is an obvious way of phrasing this in the symplectic picture.

To see what this means when we take V' to be the subspace of real valued trigonometric
polynomials f of mean 0 (i.e. [f = 0) with symplectic form S(f,g9) = [ fdg, take

" P and Q to be the subspaces with bases p, = VZncosnf and ¢, = VZsinnt (n >
1) respectively. The Darboux conditions are readily checked and the map J becomes
J(cosnt) = —nsinnt, J(sinnt) = ncosnt for n > 1. So J may be identified with d/d1.
The inner product on l’ becomes on the complexification (3" an 2.5 by2") = 3 [nlanb,,
which is equivalent to the Sobelev 1/2-norm on the mean zero functions. (We have had
to remove the zero modes.)

We now deduce Haag duality for the free bosonic field on the circle by descent from
the result for the free fermions. This was first done in the context of Minkowski space
by Araki using the smeared quantum fields directly and was technically quite hard. We
have already seen that for the fermionic representation = of LU/(1), the von Neumann
algebras #(L;U(1))" and =x(L;U(1))" are each other's quasi~commutants and that the
modular group is geometric. The free bosonic field on §! (without charge or momentum
operators) is described in the Weyl formulation by LU(1)?. the loops of winding number
zero, and the cocycle is unique up to rescaling. e restrict 7 to LU(1)° and take
the subrepresentation 7 on Hy, say, generated by the vacuum vector. This gives the
Fock (Stone-von Neumann) representation of the canonical commutation relations and
we obtain the corresponding duality result by Takesaki devissage. (Note that M, is
invariant under Mobius transformations, since 0 is fixed by SU(1,1).) To summarise: if
mo s the Fock cocycle representation of the additive group B = C™°(S',R) on Hy, then
7o(B;)"” = mo(Bye)', where By denotes the subgroup of B supporied in the interval J. The
modular group and conjugaiion with respect 1o the vacuum veclor are geomelric.

. We prove directly that any inclusion
7(L;G)" C a(L;s<) is irreducible whenever 7 is an irreducible positive energy represen-
tation of- LG. This is equivalent to showing that x(L;G)Y N a(L;cG) = C. But this
intersection if identical to the commutant of the subgroup of LG generated by L;G and
L;<G, that is the normal subgroup of loops trivial to infinite order at the end points of
I. So we have to show that = restricts to an irreducible representation of this normal
subgroup. More generally, for any finite subset 4 C S}, let LAG be the normal subgroup
of loops trivial to infinite order at points of 4 and consider the restrictions of 7 1o LAG.

Let H = L*(S')® V and let P be the projection onto Hardy space H*(5')@ V. Any
function f € C®(S') @ End(V') acts by multiplication on H and satisfies ||| P, f}|» <
(SIS D2 = |ifl]1 /2, the Sobolev 1/2-norm. Thus, putting on LU{V) the topology
of almost everywhere convergence jointly with the metric d(U,V) = ||U ~ V|32, we get
a continuous projective representation LU(V') — PU(Hp), the basic representation. All
the level one representations of LG where G is simple are obtained by embedding G in
some U/(V) and then composing the map LG — LU(V'} with the basic representation.
Since all higher leve] representations are abtained by decomposing tensor products of
sufficeintly many level one representations, it follows that they are all continuous when
we give LG the induced topology from LU(V). (This does not depend on the particular
U{V') we choose.) We have already seen that LAG is dense in LG for this topology. So
for any positive energy representation. 7(LG) is in the weak operator closure of #(L*G).
Hence the von Neumann algebras they generate coincide as required.

In general we cannot realise all representations through complex fermions. However
sinice any group is contained in a unitary group, we can always get fermionic represen-
tations at some possibly high level. (For example for Eg, the first level where this is
possible is level 30.) For such a fermionic embedding, we get all the positive energy
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representations of that level. On the othier hand if x is the direct sum of all the level one
representations, then all the level { representations oecur as summands of 7%¢. Now the
topology induced on LG by the homomarphism LG — PU(H) is clearly the same as that
induced by the homomorphism LG — PU{H®Y), since the map PU(H) — PU(H®Y,
¢ — 9% is a homeomorphism onto its image. So from the topology on LU/ (n) will give
the right topology on LG for any G C U(n).

The topology on LG can also be determined using hosons, since, when G is simply
connected, LG is generated by copies of (LT)". The restriction of any positive energy
representation # of LG to LTO = exp(il") yields the unique Heisenberg representation
(with a multiplicity). In this representation LA T is dense in LT, Hence #(LAT?) is
dense in a(LT?). It follows that LAG is dense in LG in the topology defined by any
positive energy representation.

A third argument can be given based on the Mackey machine for LSU/(2). We have a
gauge group with a compact quotient group, a product of SU’{2)’s and can use the fact
that, if SU(2) acts ergodically on an operator algebra, ihe algebra must be type 1. This
approach has technical complications and to be completed needs some facts about vertex
operators.

Note that these arguments are not applicable to Dilf §'. The topology on Diff 8 in-
duced by the weak operator topology on #/(L*{S"}} is stronger than the uniform topology.
The reason for this is the need to correct by the derivative of the diffeomorphism even
when defining its action on constant functions.

13. 1
in ce fermious. der the basic representation # of LU(n)
obtained lhrough free fermions on L(5') & €" for n > 1. The next two results give us

Haag duality for LU(n) and for bosons, in the LT formulation.
LEMMA. — w(L;U(n)Y" = #p(CH(L*(I) @ C"))". Denote this algebra by M. If U,

AG DUALITY

is the modular group of M with respect to Ep. then €8 1s (up to scalar multiples) the -

unigue vector fized by US". So the modular group of ’\IQ" Jor the vector 3" is ergodic.
In particular A is isomorphic to the hyperfinite type 111} factor.

Proor. Note that L;U(n) quasi-commutes with fermions supported in /¢, so the left
hand side is contained in the right hand side. The modular group of the right hand side
with respect to the vacuum vector £p is the Mobius flow and leaves the left hand side
invariant. On the other hand by the Reeh-Schlieder theorem &p is cyclic for the left
hand side. So by Takesaki's theorem we have equality.

The action of SU(1,1) on Hp is the direct sum of one copy of the trivial representation
(on C&p) and various holomorphic discrete series representations. So the representation
Hp of U, is a sum of the trivial representation and an infinite number of copies of the
regular representation. Tensoring any representation ¢ with the regular representation
gives dimo copies of the regular representation. So Uy and US™ are isomorphic as repre-
sentations of R. In particular £8" is the unique fixed ray. (This should also follow from
simple spectral theory, for operators A ® J + 1 @ B where 4 and B are self~adjoint.)
From section 4.4, we deduce the statements about ergodicity and type. Hyperfiniteness
is clear since the CAR algebra is a UHIF algebra.

LEMMA. — Haag duality holds for LT® (withoul zcro modes) and the local algebras are
isomorphic lo the hyperfinite 111y factor and the modular group 1s gcomelric.

Proor We have already seen that Haag duality holds for the fermionic representation
7 of LU(V). If T is a maximal torsu in {/(V’), the bosonic representation of LT° can
be obtained by restricting =. Applying Takesaki devissage, we obtain Haag duality for
the vacuum bosonic representation along with the other assertions {(by ergodicity of the
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L
modular group).

LEMMA. — Haag duality holds i the vacwum scctor for simply laced groups al level one
and the modular group is geomeiric. The local algchras are 1somorphic to the hyperfinitc
Il factor.

Proor. For SU(n) or SO(2n) whis would follow innnediately by devissage from complex
or real fermions. To include the exceptional cases, Es, £- and Eg, we use bosons. Let T
be a maximal torus of G. The vacuum tepresentation of LG on H remains irreducible on
LT. We claim Lhat'vr(L,T)” = m(L1G)! We first observe that T acts on #(L;T)" with
fixed point algebra #(L;T7)" and leaving fixed the vacuum state: for H is induced so
isomorphic to Fock space tensored with £*(A) (where A = llom(S!, T)) with the obvious
action of L;T® x T. The modular group for 7(L;T)” must restrict to the modular group
on the fixed point algebra of 7 by KMS uniqueness. and hence is geometric there. On the
other hand we can show directly that #(L; T)" = n(L;<T): for the action of T shows that
7(L;T)" is a cocycle crossed product of =(L; 70)" by A concretely realised on H so the
commutant is easy Lo compute. {Explicitly, we find loops n, € L; T in the same homotopy
class as 0 € A'C LT. So L;T = UuaL; T with the m(u,)’s eigenvectors for A = T/AL.
Evidently uqug = ¢(a, B)uqs for some cocycle ¢ in #(L;T®)" and the u, s define a cocycle
coaction.) But then #(L;G)" = #(L;cG) = #{(L;T)" by conformal sandwiching. So the
modular group of x(L;G)"(= w(L;T)") restricts to the geometric group on w{L;T?).
Conjugating by constant loops in G, we see that this is true for any maximal torus. But
L;G is generated by the subgroups L;T° as T varies, and hence the modular group must
be geometric on the whole of 7(L;G)". The modular group is ergodic. so factoriality and
type follow. Hyperfiniteness follows hecause the group T acts on the local algebra with
hyperfinite fixed point algebra (any cocycle crossed product of a hyperfinite algebra by
a discrete abelian group is injective: note the action can be untwisted for it is equivalent
to the action by conjugation of A, so we can use Connes’ result on crossed products by
abelian groups. This untwisting is predicted by Theorem 4.3.3 in [Sutherland). See also
[Sutherland], Theorem 6.2 or [Popa-\Wassermann)).

PROPOSITION. — Suppose that Haag duality holds for two vacuum representatlions
and 72 of LG and thet the modular groups for L;G are geometric and ergodic. with
hyperfinite local algebras. Then the same is true for the vacuum subrepresentation =
of @y @ m2. Indeed ihere is a unique conditional crpeciation of T (L) GY' @ wa( L G)”
ento m(L;G)" commuting with the fensor product of the modular groups and his tensor
product 1s ergodic. So w(L;G)" 1s a hyperfinite type I11, factor. (The resull extends
tmmediately o any finste number 7y, ... 7, of vacuum representations. )

Proor. Let M; = wi(Lg)” and M = 7(L;G). Now apply Takesaki devissage to the
inclusion M C M; ® M, and the vector {; @ &a. (The &'s are vacuum vectors. )

THEOREM. — Haag duality holds for<representations of a loop group of a sumple con-
nected Lie group at any level. The von Newmaun algebra of L;G has a geometric and
ergodic modular group and is isomorphic 1o the hyperfinite type 111, factor.

Proor. In view of the previous lemma it suffices to prove the result at level one since
the level £ vacuum representation is obtained by picking out the obvious summand of the
{th tensor power of the one at level one. At level one this can be done in variety of ways.
For example for SU(n). the level one representations arise by restricting the fermionic
representation 7 of LU/ (n}. They all occur with infinite multiplicity and the multiplicity
spaces furnish positive energy representations of a commuting copy of LU/(1), where
U(1) here is the centre of U(n). ( In fact 7 breaks up as a sum of n representations of
LSU(nyx LU(1). This can be seen readily by noting that LU(n)/LSU(n)LU(1)is a cyclic
group of order n and then using Mackey machine arguments.} The result then follows
by Takesaki devissage. For the other family of simply laced classical groups Spin(2n),
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a similar argument would apply il we had studied reaj (or Majorana) fermions. But
we have not. so instead we use bosons. Recall that if ¢7 is simply laced with maximal
torus 7', then the level one vacuum representation x of LG restricts 1o an irreducible
representation of LT This representation is of the type hefore, so n{L;T)" = w{L,T).
On the other hand »(L;G)" and 7(L; TY are sandwiched between these two algebras
and hence are equal and have all the claimed properties. It remains to handle the groups
Bn = Spin(2n + 1), Cp = U(n.H) and the exceptional groups G2 and Fy. The latter are
dealt with by a conformal inclusion Gy x Fy € Eg all at level one, which simultaneously
establishes the local equivalence for these exceptional groups at level one. Similarly the
cases [, and C,, are dealt with using the conformal inclusions (Binh1 % (By)y C Dimgnas
and (Cp)y x SU(2)y C Day,.

We now extend this result Lo vacuum representations in the discrete series of Diff st

THEOREM. — Lel. 7 be a wvacwum discrcle series representation of DTSy, Then
#(Diff; S')" = 7(Diffjc S*). Moreover the modular group of this algchra (with respect to
the vacuum vector) is geometric and ergodic. Morcover the algebra is isomorphic 1o the
hyperfinite fype I11 factor. .

PrROOF. We may use any of the GRO constructions (there are three families that give
the whole discrete series). For example we may take the vacuum representation 7 of
G = SU(2) x SU(2) at level (n,1) which contains }§ = SU(2) at level n + 1 through
the diagonal embedding. The GKO representation of Diff S is defined by mgro(f) =
76(J)7n(J)" where 7 and 7y are the Segal-Sugawara representations of Diff §! for G
and /i respectively. (See below for a complete explanation.) In particular, this formula
shows that 7gxo(Difl; S‘)” C n(L;G)”" and that the subalgebra is invariant under the
modular group of #{L;G)". This modular group is the tensor product of two ergodic
and geometric modular groups, so is in turn ergodic and geometric. The restriction to
the subalgebra is clearly geometric in the sense that it is implemented by #gxo. So the
result foliows by Takesaki devissage. (Note that the vacuum vector for LG is the tensor
product of the vacuum vectors of LH and Diff §* uder the GRO decomposition.)

— The centre Z of G acts by outer
automorphisms on indeed take conjugation by any path +. from g to zp with
smooth derivatives for = € Z. As explained in [Segal], conjugation = o Ady, gives a
new positive energy representation =, from a given one 7. The equivalence class of 7.
depends only on : and not the particular path chosen. In other words the centre of G
acts naturally on the (equivalence classes of ) positive energy representations of LG. Now
given an interval J we can always arrange for 7. to stay stationary on J. Consequently
the representations 7. and 7 are manifestly equivalent on L;G. When G is simply laced,
the centre acts simply transitively on the level one representations, so they are all Jocally
equivalent. Moreover all these sectors satisfy Haag duality, because Ad v.(L;G) = L;G.

The above arguments can be refined to shaw the failure of Haag duality in the vacuum
sector at level one for disjoint intervals. In fact we subdivide the circle into four contigu-
ous intervals Iy, In, I3 and J;. Take a loop 41 € LT equal to 1 on ly and z; on 13 and a
loop 72 € LT equal to 1 on J» and z2 on Iy, where 21,22 € Z. Let ] = 13 U I3 so that
I° = ;U 1. Then r(y;) lies in 7(L1G)Y and 7(32) lies in =(L;GY, but these elements
do not commute as one can verify directly from the cocycle formula in [PSegal].

15
THEOREM. Two irreducible positive energy represcntations of a given level restrict to
unitartly equivalent representations of LiG. The associated von Newmann algebras are
tupe 111, hyperfinite.
Proor. We start by showing that all the level one representations are locally equivalent.
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For simply laced groups, we proved this above and for C,, and the exceptional groups G
and Fs this was already noted using the conformal inclusions (Ch)1 x SU{(2}m C Dam
and Gs x Fy C Es.

With the level one result at our disposal, we see that if 7y, ..., 7¢ are any level one
irreducible representations, then ;€ - -G 7 is a direct sum of level £ representations of
LG and evry representation can be obtained as such a summand. On L;G it is unitarily
equivalent to ﬂ?‘. where 7p is the vacuum representation. On the other hand ﬂ(,’"(L,G)
is a hyperfinite type 111; factor. Hence all its subrepresentations are unitary equivalent.
Hence all the level € representations are unitarily equivalent on L; G.

PiorosiTioN. — If f € Difl; S' and 7 is an irreducible positive cnergy representafion of
LG extended 1o LG x Dift S1, then 7(f) € m(L;G)". The posilive energy representations
of a given level are all unitarily eguivalent on LG » Dilly S'. The Segal-Sugawara
representations of the diffeomorphism group at a fized level are all unitarily equivalent
factor representations of Diffy S*.

PoOF. Let g be the vacuum representation at the same level as x and let U : Ho — H
be a unitary intertwiner for L;G between mg and 7. Thus Ung(7)U” = a(7) for v € L/G.
Now 7g(f) lies in 7o(L;eG) which is the same as 7o(L;G)” by Haag duality. So T =
Uno(fYU" lies in #(L;G)". Now Tx(5)T" = Usg(y o [)U" = w{y o [} = #(/)m(1)7{f)",
so that T"#(f) lies in #(L;G). But T lies in x(L;G)” and =(f) lies in 7(L;-G)', so
T 2(f) lies in 7(L;<G) N #(L;G) = C by irreducibility. Hence x(f) is a multiple of
T and therefore in =(L;G)". Since 7(f) and Ung(f)’" are proportional, the second
assertion follows. Finally we know the vacuum representation restricts to an {injective)
factor representation of Diff S! so the last assertion follows from the second.

COROLLARY. If 7 is a positive energy representaiion of LG then there s a unique pro-
jective representation of Diffl; St in w(L;G)" such that Ada(f) =(y) = (3 o f). Hence
if U is a unitary infertwiner between two different representations « and o of LG, it
automatically infertwines the associated representation of Diffy ST

Proor. Existence follows from the proposition and uniqueness follows from the fact
that #{L;G)" is a factor. The uniqueness result implies that 7 and AdlU"¢ must agree.

LEMMA. — The discrele serics representations of DT S' for a fized ceniral chergc are
all unitarily equivalent (injective) factor represeniations.

Proor. Suppose that the discrete series is associated with a an inclusion LH C LG
and 7 is a positive energy irreducible representation of L;G of level one. From the
ahove corollary, Diff; S! has unique projective representations 7y and 7 in w(L;G)’
and 7(Ly)" respectively, compatible with its reparametrisation actions on L;G and
LiH. Now Ad=; and Adwy agree on L; H and commute by the argument of [GKO} (cf
section 3). Thus the GKO representation of Diff;/, ST given by 73(f) = m{([)ma(Sf)" hes
in 7(L;G)" and Ad(71(g)) - 7a{f) = n3(gfg™"). We shall write mgyxo for 73: it is a sum
of all the GKO representations coming from 7, each with infinite multiplicity.

Taking « to be the vacuum representation of L; G, we deduce by Takesaki devissage that
7GKo is a type 11T} hyperfinite factor representation. If ¢ is any other representation of
level one, then there is a unitary U intertwining = and ¢. By the corollary, U intertwines
#, and 7, with ¢, and .. Hence, by definition of 7gko and ogio, U must also intertwine
7sKo and ogko. The result follows.

16. LOCAL FACTORISATION AND THE DICK TRICK.
THEOREM. — Let = be a osihve yr representation of LG and et Iy and Iy be
disjoint iniervals on the circle with 1 = I, U I;. Then the restriction of n to LG
is unitarily equivaleni the fensor product of the restrictions to Ly G and L;,G. An
analogons result holds for Diff S*.
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Proor Ve have already seen that the analogous result is true for free fermions and
LU(n) in the fermionic representation. Since the result states that 6 EAlL, 6 @
ﬁ]!,,zg. we see that it passes immediately to subgroups // < G and tensor prociucts
using the local equivalence ol representations of a fixed level. So in particular it holds
for LSU(n} at any level and follows for any group once we know the result at level
one. Now at level one when the group is simply laced. we have already observed that
T LyGY' = x(L,T)" whenever T is a maximal torus in G and J is a connected interval.
This result extends immediately to finite unions of intervals. Tensor products and the
result for the fermionic representation of LU(1) show that the theorem is valid for LT°.
To deduce it for LT, we note that L; T is generated by L; T° and elements u,, v, (0 € A)
in the same homotopy class as a. Now we can implement the action of T on L; T by loops
concentrated in a small neighbourhood of7j. S0 on U, vy are (o, 3) eigenvectors of T x T
This shows that the algebra m(L;T)" is the twisted crossed product of a(L; Ty by Ax A
and hence that factorisation holds also for LT (the von Neumann algebra generated by
the 7(Ly,)" is isomorphic to their tensor product). Thus #{,,7 = 7|1, T ® 7lr,,7. Let
U intertwine these two representations. We claim it also intertwines the corresponding
subgroups of LG. Inif t; € L;, T.then Ua{t;)n(t)'™ = x(t;)@ ({2}, so by linearity we
find that U(aya3)U° = ay G a» for ap € #(L;, T)". Since #(L;,G) C n(L;, T)". we get
the result for LG. This proves the result at level one for simply laced groups and as above
it follows for the other compact groups using conformal inclusions. The observation on
tensor products implies the general assertion.

It remains to discuss Diff §1. Indeed since 7gio(Diff; $*)”" C 7(L;G)", the assertion
follows immediately from the identity Uaya2U" = a; @ aq for a4 € 7(L;,G)"'.

LEMMA. — Suppose that M is a von Neumann algchra that can b obtained as the weak
closurc of an increasing union of algebras M, . Suppose moreover that we can find a
type I factor lying between M, and M,y for every n. Then M is hyperfinite.

Proor. Obvious.

LeMMA. — If I C J are open inferval on S?, then there is a type I factor lying between
a(LyGY and 7{LyG)". Moreover Vva(L; GY' = n(LyGY' 1f the micrvals I, increase Lo

J. Hence the local algebras arc hyperfinite. 4 similar vesult holds for the diffeomorphasm ©s 2

group.

Proor. If H, and Ha are groups with a representation = of Hy x Hy such that 7l xpy. =
i, X Ti,, then there is a type I factor between = (/)" and w(Hq)'.

We mention a proof of f{actorisation based on a simplified version of [BW]and [BD'AF].
Assume we have a positive energy representation U(z) = :to of the circle group on H
with vacuum vector 2 and that z and y lie in digjoint local algebras M (];) and M(]3),
so that [z, U(z)yU(z)"1] = 0 for z near 1, say on an arc J with end points ay with
Ty = a_. Define fu(2) = (zz2oyQ, Q) for |z] < 1 and f_(z) = (y=" 222 Q, Q) for |z| > 1.
The commutativity condition on z and yshows that f; and f. agree on I so jointly define
a holomorphic function f on C\J¢. Let g(z) = exp(—a(z/a — 1)"Y? —&(z/a - 1)~1/?)
for z in C\7¢ U (—nc,~1], where a = exp{—in/4). This holomorphic function blows
up at ay; however in the closed sector S bounded by the radii through ax it satisfies
lg(z)] < 1 and is continuous. Let I' be any simple closed contour in S, coinciding with
the radii near a4 and and winding round 1 once. If D is the domain enclosed by I,
fg is holomorphic on D and continuous on D. By Cauchy’s theorem 27if(1)g(1) =
frg(:)j(:)(z =~ 1)"'dz. Let I'y, T be the parts of the contour inside and outside the
unit disc. Because |g{ras )} ~ exp(=(2|r - 1])=1/?) and there is an asymptotic estimate
([Kac-Wakimoto]) Tr(}(ras)e]) = Tr(jr{t°) ~ exp(~C/logr) with C > 0 asr 1 1, we
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f(yeEbe(z — 1)V de

1
A4 = ———— {
= ame(h) /r, g

are trace class operators such that

(2. M) =f(1) = (z A5y Q0. +(y4_70.92)

for r € M(I1) and y € A(]2). Since A, and A_ are trace class, the right hand side
extends to a normal form on M(I}} & M(Js) which is a state w in view of the form of
the left hand side. The representation =, of M(J1)& M{]2) is faithful (since the algebra
is a factor) and may be canonically identified with the obvious representation on the
closure of M(1;)M(12)Q. By the Reeh-Schlieder theorem this is dense and thus =, gives
an isomorphism of A (],) € AM(/,) onto the von Neumann algebra generated by M(/))
and M(]z). Because everything is type 111, this isomorphism can be implemented by a
unitary.

17, j — We prove that
the subfactors defined by LG or Diff 51 come equippec ocalised endomorphisms and
braiding, just like the 1ones—\\enzl subfactors. Given the results on local equivalence, a
postulate in algebraic QFT, we can argue as in [DHR], with slight differences due to our
more concrete setting. \We shall use § to stand for either LG or Diff S? and Gy will be
the subgroup supported in [.

Let (mg,Ho) be the vacuum sector and (7;,H;) an arbitrary sector. Let I be an
interval and with subinterval J; CC 1. Set J = If. Let U,V : Hg — H; be unitary
intertwiners for G; and ¢ respectively. Let N = 7,(G;)” and M = m,(G;<)’. so that
N C M. Then if M(I) = no(G;)" we have M(1) = VAV = U~NU, the latter
by Haag duality. Hence the canonical inclusion N C M is isomorphic to the inclusion
VIUMDU™V € M(]) and p(z) = V"UzU"V defines a endomorphism of M(]) onto
the subfactor. This endomorphism is localised with support in I in the following sense:
if z is has support either disjoint from 7y or containing I, then p(z) has the same
support. When the support is disjoint, p(x) = z. (Note too that Ad(L/V'") defines an
endomorphism of M onto N.) Clearly if py and p» are Jocalised endomorphisms of A/ (/)
with disjoint supports, then the support preserving properties of py and p, immediately
imply p1 - pa = p2 - py. It should be noted that in general il J CC I, we do not have
MY N M(J)Y = M(I\T): this is true however if J and ] have a common endpoint, by
Haag duality.

Let p be an endomorphism supported in 1, CC T and let \T; = I, uls. U T isa
diffeomorphism in Difl; S, then py(z) = T p(TX T )T is also a localised endomorphism.
(No extra generality is obtained by allowing diffeomorphisms that fix the endpoints of
1.} Note that pr = Ad(U) - p where U = T"p(T). Choose T so that p and pr have
disjoint supports. From po pr = pr o p, we see that g = U* p(I/) commutes with p?(M).

We claim (a)the element g is supported in I;: (b} depends only on the relative position
of Iy and its image under T, changing to g~} if this is reversed; and (c) satisfies the
braid relation gp(g)g = plg)gplg). It follows that 7(a,;) = p™~'{g) (i > 1) defines a
representation of By, in M, with 7(0;) lying in the relative commutant of p'+(M),

To see this, suppose pr is supported in J3. Then U is supported in I} U I3 and p(z) =
U™zl f z has support in Iy: for U lies in M(J) N M{ly) = M{I, U I3), since both
pr and p fix M(I3). But then p(U) and hence g = U p(U') has support in Iy N I3 If
now z is supported in I3, so too is pr(z) = UzU". Hence UzU" is fixed by p, forcing
g to commute with all such z thus proving (a). If S is another diffeonmorphismy with
ps supported in I3 and V = S"p(S), then both p(z) = U zU = V"2V for z € M(];).
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Since UV* is supported in 1; U T3, it must Tie in A7(13) and therefore is fixed by p. Thus
Ump(l7) = V" p(V'), proving the first part of {b). The second part follows by applying
the idenlil.y p-pr = pr-ptoT. To establish (¢}, we note that from the identity gp(g) =
Ve p (V). we obtain p(g)gp(y) = p(a)Vp* (V) and gplg)g = (Vg = Vogp*(V),
since g € p*(AM). So the relanon is equivalent to Vp(g)V'" = q I‘lns holds because
Vipla)i™
are two equivalent ways .1dl an lrreducxl)le inclusion C M can have ﬁmle index in a
computable way. The first is that there should be normdl conditional expectations from
M onto N and from N’ onto M’, both necessarily unique ([Connes]). (This condition is
immediately equivalent to the condition of [Kosaki], by Haagerup’s results on operator
valued weights.) The second condition is that there should be a normal conditional
expectation E of N onto M which satisfies an Pimsner~Popa inequality E(z) > Ar for
all 2 > 0 in N for some fixed A > 0. The mdez is the reciprocal of the largest possible
A. In this case there is automatically a normal conditional expectation of N' onto M’
salisflying the same inequality. The first. condition is very natural for the loop group or
diffeomorphisim group subfactors, since it is completely symmetric. We have not heen
able to verify it directly for these inclusions: the usual ‘mass gap” techniques fail in CFT.
On the other hand, it is easy to see (by Haag duality) that the Mobius flow is a modular
group for a weight on 7(L;G). Finite index amounts to this weight being a state, by
Takesaki's theorem.

We now outline a method for establishing finite index using conformal inclusions based
on the second ‘Pimsner-Popa’ criterion for finite index. Let LH C LG be a conformal
inclusion and suppose that the vacuum representation of LG restricts Lo representations
of LH that all satisly Haag duality or have finite index. Then the inclusion 7(L;H )y'c
T(L]G)” has finite index and is mdependent of the given sec thermore

= pr(g) and ¢ and pr have disjoint supports.

. i fulhermo}e Haag
s Tor = (and G) “and & is an irreducible represemallon of LH appearing in
7L he inclusio #(L7HY" C o(L;< HY has finite index. Similar results hold for
GROtclusions DIf SV LH C LG, -

To see this set M = a(L;G)', N = #(LyHY and M, = 7(L;H).
M.

(1) By local equivalence, the inclusion N C M is independent of .

(2) If 7 satisfies Haag duality, the inclusion Af C Af; is isomorphic to the commutants
of the inclusion N C M (replacing 1° by I). So N C M has finite index iff M C M, has
finite index and they will have equal index.

(3) The inclusion N C Af (and hence A C M) is irreducible. When 7 is the vacuum
representation, N' N Ay = #(LHY .7We can do the computation N/ A7 in the vacuum
representation from (1). Note that N'NAM, = a(L, H) Nnx(L;cH) = =(LH) by density
of LyH - Ly<H in LH. Since the vacuum vector is cyclic for M’ = 7(L;cG)"” (by the
Reeh-Schlieder theorem), no non-trivial projection in m{(LH) can lie in A and hence
NinM =C.

so that N C M C

=

(4) We argue that for the vacuum representation. the inclusion N C M, is of finite &nit

index (in the sense of Kosaki). Let N C M C M, be inclusions with N C M, locally
trivial, i.e. such that N’ M; is Abelian with minimal projections py. .... p, with
piMip; = Npj. Set Ey(s) = 3 pjazp; and let u(() = S (pi for ¢ € pa (the nth
roots of unity). Since E; can be obtained by averaging over Adu, we see that E; is a
conditional expectation onto the relative commutant of u(y1,), ie. onto N @ ¢ {HCp;). and ]
that Ey(z) > z/n for z > 0.. The trace on the second factor giving equal weight to the

s defines a conditional expectation £z of N ® (#:Cp;) onto N satisfying Ea(zx) > z/n ,

so E = E30E; gives a faithful normal conditional expectation of M; (and hence M) onto J
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A satisfying E(r) 2 z/nfor z > 0. If in addition N is irreducible in M, we know that is
at most one normal conditional expectation of Af onto N. Thus the normal conditional
expeci-ahiél-l E of M onto N satisfies the Pimsner-Popa inequality. So N C Af has finite
index. (A slightly more general argument is needed to handle the case when 7|z is not
multiplicity free or where the inclusion is locally of finite index rather than just locally
of index one. No new ideas are involved.)

The result follows by combining observations (1), (2). (3) and (4).

Note that M; is just the basic construction for N € M, i.e. it is generated by M and
¢ the projection onto the vacuum subspace for N. For e;ze; = E(2)e; defines a faithful
conditional expectation E of M onto N (faith{ul by the inequality). If we compute the
commutant of (A, ¢;)"” and use Haag duality to replace /° by I, we are reduced to proving
that 4 = M N (€)Y = N. But E restricts to a homomorphism of 4 onto N, which by
faithfulness forces 4 = N

As illustrations of this method, we prove that SU(2) at level 2 and 4, SL'(4) at level
2 and Diff(S?) for ¢ = 1/2 all lead to finite index sublactors. We also show that Haag
duality fails for L7(4,H) at level one: it is simply connected but not simply laced. (In
this connection, we predict that the subfactors for the non-vacuum representations of Fjy
and G» at level one should have index 4 cos® 7/5.)

(a) The branching rules for SU(2)2 x SU(2)2 C SU{4) are:

¢—0gl+mem. 0—0s0 H—lem+mel Q—D@D

(b) The first four branching rules for SU(2)4 x SU(4)2 C SU(8), are:
P—too+mm:@+me o—oeo+anoff

B-tem+m:P+amefH E—D®E§3+m:m®g

(Al others can be obtained by central automorphisms.)
(c) The branching rules for SU(2); C SU(3); are:

¢l—0+mo. D—m. H—0O

(d) The branching rules for SU(4)2 C SU(G); are:
0—-0+F. o-B E}—@j, Q——m:w@, E—-ﬁj E—B

{e) The branching rules for SU7(2); x Diff S,‘/._, C SU(2); x SU(2); are:
\¢ b
M 4

060—00V(1/2.0)+meV(1/2,1/2), 000 —06V(1/2,1/16)

where V(c, h) is the representation with central charge ¢ and conformal dimension h.
Ve shall just use these rules to prove that the subfactors have finite index. (In fact
their indices have to be 1, 2. 3 or 4. although we do not prove this.) The vacuum
representations for SU(2); have diagrams # and (1, so from (a) we see that O has to
give a subfactor of index 2. From (c) and (d) we see that the representations of SU(2)4
with diagrams 8, CT3 and OOZI3 and those of SU(4); with diagrams #, BH and
have finite index. From the branching rules in (b), all representations of SU(2)4 and
SU7(4); have finite index. Next we deal with Diff Sl’/:,. Taking the self~dual Clifford
algebra Cliffps(L?(S")) generated by a single real Fermi field on the circle in the Fock
representation #p corresponding to Hardy space, this Fock space breaks up as the direct
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sum of the projective representations mo on V{1/2.0) and and =y on V(1/2.1/2) of
DiﬂSI’“ (sce [Kac]). Now the even self-dual algebra CIifl},(L¥(S")) (i.e. the fixed point
algebra under the grading) acts irreducibly on these summands by 7o and ;. On the
other hand the vacuum vector in V(1/2,0) is cyclic for both Diff; $* and CHfT*Y (L*(1))
(by the Reeh-Schlieder theorem) and the corresponding modular group is geometric. By
Takesaki's theorem, xo(Cliﬂ:’,(L:’(])))" = mo{Diff; S1)". We already know Haag duality
is satisfied in this sector. We now argue that these local algebras also coincide in the sector
7, and that laag duality holds. Any fermi field v{f) with f supported in I¢ provides
a unitary intertwiner U = wp(¥(f)) between 7o and 73 for A(J) = Chiff§,(L3(1). By
definition Umg(A(INU" = m (W [YAI)(S)") = piy(A(J7)) and this extends Lo the
weak closures. So llaag duality is also valid for Clifff, in the non-vacuum sector. On
the other hand if ¢ is a diffeomorphism. then 7(y2)a((EN)7{@) = 7(M(9.£)) for any
£ € L*(S',R) and hence Ump(¢)U/™ ='m;(6) for any @ € Difi; §'. Thus U transports
the results {for 7 to 7. In this way we see that Haag duality folds for Diff $? in the
Neveu-Schwarz sectors (h = 0,1/2). The Ramond sector(h = 1/16) must have index 2
from (e) and the fact that SU(2)2 has index 2 for Q. Finally Haag duality cannot hold
at level one for U(4,H) because of the conforinal inclusion I/(4.H) C Es. The vacuum
representation of Eg splits into two representations for which Haag duality holds, while
the other two level one representations remain irreducible [KW). So the index for these
two must be two.

Kanie have constructed vertex operators infinitesimally for SU(2) [TK] (and in published
work for SU(n)). These are the matter fields or primary blocks of conformal field theory
and move between different sectors. They should be unbounded operator valued distri-
butions that intertwine the reporesentations of both the loop group and diffeomorphism
group. Taken together they make the whole theory irreducible and are in some sense in
duality with the loop group. The vertex operators are known to exist as formal power
series but their distributional properties have not been discussed explicitly. Once it is
known that they are unbounded operator valued distribution in the sense of Glimm-
Jafle, for example, then when smeared over a test function supported in [¢ they will
provide intertwiners for L; G and Diff; 5'. One could then hope by a careful analysis to
match up the braiding of Tsuchiya and Kanie with the braiding provided by the local
endomorphisms above. This work is still in progress and will he reported on elsewhere.

For the moment we outline a general philosophy for obtaining a workable analytic
picture of vertex operators. The idea, inspired by work of Tsuchiva and Nakanishi,
is in keeping with our method of devissage from the free field picture using the GKO
construction and conformal inclusions. For simplicity we consider only the case of SU(n},
although the construction would apply more generally to simply laced groups and other
cases of conformal inclusions. There are n level one representations of LSU(n). As we
have seen, we can use loops with a central discontinuity to move between different sectors.
Since such a loop may be identified {modulo constant central loops) with a loop with
values in the adjoint group PU{n) and since constant central Joops act as scalars in any
positive energy representation, the direct sum of the level one representations give rise
1o a positive energy irreducible representation of LPU(n). el 'T/Z(C-;)

The idea of extending representations to loops in G = AdG is also useful from other
points of view. For example at higher levels the representations will group together into
orbits under the natural action of the centre of G. The direct sum over each orbit will
vield an irreducible positive energy representation of LG and hence a new subfactor.
When G = SU{2). we expect. that the subfactors corresponding to LSO(3) should lead
to the D, series of subfactors of index less than 4 (see [GHJ)).

Now given a one—parameter subgroup of 7', i.e. a point a of the weight lattice. we may
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representations H; of LG branch as H; = &1}, @ K, where the A’;'s are irreducible

positive energy representations of LH and 1%; is a finite-dimensional multiplicity space.

A vertex operator V'(z) : H; @ Vj — H for LG will give rise 1o a sum of vertex operators

for LH. From a knowledge of the restriction map R,(G) — R (H) between the fusion

algebras at the relevant levels, one can predict that all vertex operators of LH will appear

in this way. On the other hand the heat kernel estimates for Vj (:) immediately imply

similar estimates for the vertex operators for LH so the analytic properties foliow. As

an important special case one can use the conformal inclusions SU(n),, x SU(m), C

SU(nm);. The branching rules have been determined as particular cases of rank-level

duality {see [Tsu-Nak]) and all multiplicities are either O or 1. So H = &H] @H]" for a

level one representation of LSU (nm), where H] and H[" are representations of LSU(n)

and LSU(m) respectively. We may compress a vertex operator between X and Kl 1o a_

map between two spaces H' and K7 by applying a slice map id@w where w(T) = (TE. 7}

for some lowest energy vectors § € M and n € X'J". From our infinitesimal knowledge

of the veriex operators, we expect that V(:) breaks up as a sum &V (z) @ V().

We know that g&e splits as a straight tensor product on the summands (since we have

a conformal inclusion), so the estimate for Hq""\f}?(:)ql"’||2 follows from the estimate

for gLoV(z)gle and the fact that }(‘A;}"(:)ql“’.fql“’n)] is a known monomial in |z| and

q. It seems highly probable that other properties of the higher level vertex operators

can be established using conformal inclusions. It is worth noting in this context that if

LH C LG is a conformal inclusion, then the compression of a loop in L;G will provide

an intertwiner for L;cH between different subrepresentations of a given restriction. This

provides another way of obtaining explicit intertwiners.
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