A. Henriques, nov. 2005.

• Given a space X the Yoneda functor maps it to

$$\begin{split} \mathrm{Y}(X): \mathsf{Top} & \longrightarrow & \mathsf{Sets} \\ T & \mapsto & Hom(T,X). \end{split}$$

- A groupoid is a category where all arrows are isomorphisms.
- Let X be a set. The groupoid IX has Objects(IX) = X and only identity arrows.

• Let G be a group. The groupoid EG has Objects(EG) = G and exactly one arrow between any two objects. Note that EG is equivalent to the trivial groupoid, and that it has a free action of G.

• The groupoid BG := EG/G has only one object and G many arrows.

• Let G be a group acting on a set X. The quotient groupoid is given by $X/\!\!/G := (X \times EG)/G$. It has $Objects(X/\!\!/G) = X$. Moreover, an arrow $x \to y$ is the same thing as a group element g such that gx = y.

.....

- A stack is a functor $F : \mathsf{Top} \to \mathsf{Gpds}$ such that for every space T and every open cover $\{U_i\}$ of T, each time we are given:
 - objects f_i in $F(U_i)$,
 - morphisms $\alpha_i : f_i \to f_j$ in $F(U_i \cap U_j)$, - making the diagram $f_i \xrightarrow{\alpha_{ij}} f_j \xrightarrow{\alpha_{jk}} f_k$ commute in $F(U_i \cap U_j \cap U_k)$,
 put there exists an accordially unique above of

then there exists an essentially unique choice of:

- object f in F(T), - morphisms $\beta_i : f \to f_i$ in $F(U_i)$, - making the diagram $f_i \longrightarrow f_i$ commute in $F(U_i \cap U_j)$.
- Example: The functor $\mathbb{Y}(X)$ given by $T \mapsto \operatorname{IHom}(T, X)$ is a stack.
- Given a functor F: Top → Gpds, its stackification F' is given by:
 An object of F'(T) is an open cover {U_i} and a collection f_i ∈ F(U_i), α_{ij} : f_i → f_j as above.
 A morphism (U_i, f_j, α_{ij}) → (V_a, g_a, β_{ab}) is a collection of morphisms γ_{ia} : f_i → g_a in F(U_i ∩ V_a)
 f_i → f_j
 making the diagram γ_{ia} → f_j
 g_a → g_b
 γ_b commute in F(U_i ∩ U_j ∩ V_a ∩ V_b).
- Let G be a topological group. Then $\mathbb{B}G$ is the stackification of the functor $T \mapsto \mathbb{B}Hom(T,G)$.

• Let G be a topological group acting on a topological space X. Then the quotient stack [X/G] is the stackification of the functor $T \mapsto Hom(T, X)/\!\!/ Hom(T, G)$.