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1 Orbispaces

1.1 Sheaves

Let Topc denote the category of compact spaces. Declare a collection {fi : Vi → T }i∈I to be a
cover if I is finite and if

⋃

fi(Vi) = T . This defines a Grothendieck topology T on Topc (for an
introduction to Grothendieck topologies, we refer the reader to the first 10 pages of [5]). A T -sheaf
on Topc is a contravariant functor F : Topc → Sets such that for every T -cover {Vi} of a space
T ∈ Topc, the map [qsf]

F (T ) −→ lim
←−

[

∐

F (Vij) ←←
∐

F (Vi)
]

(1)

is an isomorphism of sets. Here Vij denotes the fibered product Vi ×T Vj .

Example-Definition 1 Let X be an arbitrary topological space. Then the Yoneda functor

Y(X) : T 7→ Hom(T, X)

is a T -sheaf. Indeed, let {Vi → T } be a T -cover. An element in the RHS of (1) is a collection of maps
fi : Vi → X such that fi|Vij

= fj|Vij
. These descend to a map f defined on colim(

∐

Vij →→
∐

Vi).
This colimit is compact and admits a bijective map to T , it is therefore homeomorphic to T . We
have produced a map f : T → X , i.e. an element of the LHS of (1).

If X is a compactly generated topological space, namely if it’s the colimit of its compact sub-
spaces, then one can recover X from Y(X). Indeed, if F = Y (X), then the underlying set of X is
just F (pt). The topology of X is then the finest one such that for all sheaf map Y(T )→ F , T ∈ Topc,
the maps T = Y(T )(pt)→ F (pt) are continuous. One also checks that sheaf maps Y(X)→ Y(X ′)
necessarily come from continuous map X → X ′. Thus, we have the following version of the Yoneda
lemma:

Lemma 2 The functor Y provides a fully faithful embedding of the category of compactly generated
topological spaces into the category of T -sheaves on Topc. �

Note that the idea of using T -sheaves as a replacement for topological spaces is not new. It is
for example almost equivalent to Spanier’s quasi-topologies [3].

We shall sometimes extend the notion of T -cover to all compactly generated spaces. In that
case, a T -cover of X will be a collection of maps {Vi → X}i∈I such that for every compact subspace
T ⊂ X , there exists a finite subset I ′ ⊂ I such that {Vi ×X T → T }i∈I′ form a T -cover of T . From
now on, all our topological spaces will be assumed to be compactly generated and we shall use the
conventions of [4].
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Given a CW-complex X , we can replace it by the corresponding sheaf Y(X). And just like X
is the colimit of its skeleta X(n), the sheaf Y(X) is the colimit of the Y(X(n)). Recall that each
skeleton of X is obtained from the previous one by a pushout diagram [cpw]

∐

Sn−1 //

��

∐

Dn

��

X(n−1) // X(n).

(2)

A particular feature of the topology T (not shared by the “open covers” topology) is that (2) induces
a pushout of sheaves [cqv]

∐

Y(Sn−1) //

��

∐

Y(Dn)

��

Y(X(n−1)) // Y(X(n)).

(3)

Lemma 3 The diagram (3) is a pushout of T -sheaves.

Proof. Let F denote the pushout of Y(X(n−1)) ←
∐

Y(Sn−1) →
∐

Y(Dn), and α the map F →
Y(X(n)). An element of F (T ) is represented by a T -cover {V1, V2 → T } and three compatible
elements

f1 ∈ Y(X(n−1))(V1), f2 ∈
∐

Y(Dn)(V2), f12 ∈
∐

Y(Sn−1)(V12).

In other words, it consists of three compatible maps f1 : V1 → X(n−1), f2 : V2 →
∐

Dn, and
f12 : V12 →

∐

Sn−1. The map α then sends the triple (f1, f2, f12) ∈ F (T ) to the function f ∈
Y(X(n))(T ) given by

f(t) =

{

f1(t) if x ∈ V1

f2(t) if x ∈ V2.

The inverse α−1 : Y(X(n))(T )→ F (T ) then assigns to f the T -cover [tcV]

{

V1 = f−1(X(n−1)), V2 = f−1(
∐

Dn)
}

(4)

and the functions f1 = f
∣

∣

X(n−1) , f2 = f
∣

∣

∐

Dn , f12 = f
∣

∣

∐

Sn−1 . Note that (4) is only a T -cover of T ,

and typically doesn’t refine to an open cover. �

1.2 Stacks

Let Gpds denote the 2-category of groupoids (see [1] for an introduction to 2-categories and bicat-
egories). Given a group G, let EG denote the groupoid with G as object set, and with exactly one
morphism between any two objects. Note that EG is equivalent to the trivial groupoid, and that it
posesses a free action of G. Let us now define BG := EG/G. This groupoid now has just one object,
and G many morphisms.

Definition 4 [fsk] A T -stack on Topc is a contravariant functor F : Topc → Gpds such that for any
T -cover {Vi} of a space T , the map [qsc]

F (T ) −→ lim←−

[

∐

F (Vijk) ←←
← ∐

F (Vij) ←←
∐

F (Vi)
]

(5)

is an equivalence of groupoids. Here Vij = Vi ×T Vj , Vijk = Vi ×T Vj ×T Vk, and the limit is taken
in the bicategorical sense.

We shall define CW-orbispaces as special kinds of T -stacks on Topc. To view an ordinary CW-
complex X as a CW-orbispace, we take the sheaf Y(X) : Topc → Sets and compose it with the
natural embedding Sets→ Gpds.
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1.2.1 Principal bundles

Example-Definition 5 Given a topological group G, we let BG be the T -stackification of the functor
T 7→ B(Hom(T, G)).

Given T ∈ Topc, the groupoid BG(T ) is then the colimit over all T -covers of the RHS of (5).
An objects in that groupoid is then by definition a collection of objects in B(Hom(Vi, G)), and a
collection of morphisms in B(Hom(Vij , G)) satisfying a compatibility condition in B(Hom(Vijk , G)).
In other words, it’s just a 1-cocycle with values in Y(G). A morphism between objects (i.e. 1-
cocycles) c and c′ is a 0-cochain b, defined on a common refinement, such that bicijb

−1
j = c′ij . Two

such 0-cochain are identified if their restrictions to a finer cover are equal.
Let us say that G P → T is a G-principal T -bundle if there exists a T -cover {fi : Vi → T }

such that f∗
i P and G× Vi are homeomorphic as G-spaces over Vi. We then have an equivalence of

groupoids [jhc]

BG(T ) ≃
{

G-principal T -bundles on T
}

. (6)

Indeed, given a G-principal T -bundle P → T with chosen trivializations ϕi : f∗
i P → G, the 1-

cocycle cij : Vij → G is the difference between ϕi and ϕj . Inversely, given a 1-cocycle cij : Vij → G,
we can use it to descend the trivial bundles G×Vi into a bundle over T . This is a T -bundle since it
trivializes when pulled back to the Vi. Thus, we could equivalently have taken (6) as our definition
of BG.

We note that G-principal T -bundle are not very different from usual G-principal bundles.

Proposition 6 Let G be a (finite dimensional) Lie group. Then the notions of G-principal T -
bundle and G-principal bundle agree. In other words, every G-principal T -bundle is locally trivial
in the usual topology.

Proof. Let P → T be a G-principal T -bundle. Then P is a locally compact space with proper
G-action. It satisfies the hypothesis of Palais’ theorem [2] and thus admits slices. �

For the reader’s convenience, we sketch the full argument for G = R. A local trivialization of
an R-principal T -bundle P → T is an R-equivariant map ϕ : P → R defined in the neighborhood
of a given orbit. Such a ϕ can be written down explicitely: pick a compactly supported function
f : P → R≥0 which is not identically zero on that orbit. Then let ϕ(x) =

∫

t∈R
t · f(x − t)/I(x),

where I(x) =
∫

t∈R
f(x− t). The proof for other Lie groups G uses similar techniques.

However for general G, the two notions are not the same. For example, if P → T is a non-trivial
G-principal bundle, then

∏∞

i=1 P →
∏∞

i=1 T is a (
∏∞

i=1 G)-principal T -bundle, but it’s not locally
trivial in the usual topology.

If X is not compact but merely compactly generated, we shall say that G P → T is a G-
principal T -bundle if it is one when restricted to each compact subspace of X . From now on,
whenever we say “bundle”, we shall always mean “T -bundle” instead.

1.2.2 Quotient stacks

Given a group G acting on a set X , let X//G denote the groupoid X ×G EG. The set of objects of
X//G is X , and an arrow x → y is given by a group element g such that gx = y. Note that the
set of isomorphism classes of objects in X//G is just X/G. If the action of G on X is free, then the
constant map EG→ ∗ induces a natural equivalence of groupoids [xgm]

X//G
∼

−→ X/G. (7)
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If X is a groupoid equipped with an action of G, we shall also write X//G := X ×G EG. We then
have 2-categorical pullback squares [bEB]

X //

��

∗

��

X//G // BG

and

G //

��

∗

��

∗ // BG

(8)

One can also define X//G by mens of a universal property. Namely, for every groupoid Y
equipped with the trivial G-action, we have a bijection [qmm]

{

maps X//G→ Y
}

←→
{

G-equivariant maps X → Y
}

. (9)

We should emphasize that in a G-equivariant map f : X → Y , the group G acts not only on X , Y
but also on f . For example, the identity BG → BG corresponds to a G-equivariant map ∗ → BG
where all the action is concentrated on the functor. Note also that puling back that action along
the projection X//G→ BG, one then recovers the original G-action on X .

Example-Definition 7 Let G be a topological group acting on a topological space X . Then the
quotient stack [X/G] is the stackification of the functor T 7→ Hom(T, X)// Hom(T, G).

The groupoid [X/G](T ) is then equivalent to the following geometrically defined one. Its objects
are pairs consisting of a G-principal bundle P → T and a G-equivariant map P → X . The
morphisms are then isomorphisms of principal bundles commuting with the equivariant map to X .
Indeed, an object in [X/G](T ) consists of a cover {Vi}, and functions fi : Vi → X , and gij : Vij → G
satisfying gijfj = fi and gijgjk = gik. The gij can then be used to define P while the fi give the
map P → X .

Similarly, if Y(G) acts on a stack F , then we define [F/G] as the stackification of the functor
F//Y(G). This agrees with the above definition when F is of the form Y(X). The pullbacks (8)
then induce pullbacks of stacks [bCG]

F //

��

pt

��

[F/G] // BG.

and

Y(G) //

��

pt

��
pt // BG

(10)

Once again, pulling back the Y(G) action on pt→ BG recovers the original action on F .

Note that if G X is free, then by (7) the stack [X/G] is equivalent to Y(X)/Y(G). If the
action is proper, then we also have [X/G] ≃ Y(X/G).

Example 8 [ghg] For X = H\G, we have [X/G] ≃ BH . Indeed, the first one is the stackification of
the functor T 7→ Hom(T, H)\Hom(T, G)×Hom(T,G) E Hom(T, G) = Hom(T, H)\E Hom(T, G) while
the second one is the stackification of the functor T 7→ Hom(T, H)\E Hom(T, H). The inclusion
E Hom(T, H)→ E Hom(T, G) induces an equivalence between these two functors. Their stackifica-
tions are therefore also equivalent.

A map from Y(X) to BG is the same thing as an element in BG(X), which is then equivalent
to a G-principal bundle on X . This correspondence carries over to stacks. By a G-principal bundle
over a stack F , we shall mean a stack Q equipped with an action of Y(G), and an isomorphism
between [Q/G] and F . Note that this agrees with the notion of principal bundle when F is of the
form Y(X). Indeed, if P → X is a principal bundle in the usual sense, then Y(P ) carries an action
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of Y(G), and [Y(P )/G] = [P/G] = Y(X). Inversely, if Q is a stack as above, then we have a pullback
[sfg]

Q //

��

pt

��

Y(X) // BG.

(11)

Pick a T -cover {Vi} of X and then refine it so that the composites Y(Vi) → BG are equivalent to
the trivial map (i.e. classify trivial G-bundles). We then have

Y(Vi)×Y(X) Q = Y(Vi)×BG pt ≃ Y(Vi)× (pt×BG pt) = Y(Vi)×Y(G).

The stack Q is T -locally of the form Y(X × G). It’s therefore of the form Q = Y(P ), where P is
some G-principal bundle over X .

Example 9 Let H → G be a group homomorphism. Then the corresponding map BH → BG
classifies the G-principal bundle [G/H ]→ BH . If H is a closed subgroup, this can also be identified
with Y(G/H)→ BH .

As in (9), a map from [F/G] to some stack Y is the same the thing as a Y(G)-equivariant
map from F to Y . Indeed by the universal property of stackification, a map [F/G] → Y is the
same thing as a map from F//Y(G) to Y . This in turn is equivalent to a Y(G)(T )-equivariant map
F (T )→ Y (T ) for each T ∈ Topc. Phrased differently, it’s a Y(G)-equivariant map from F to Y .

Example 10 Let X be an H-space and G a group. Then a map [X/H ]→ BG is the same thing an
H-equivariant G-principal bundle on X .

1.2.3 The coarse moduli space

By a point of F , we shall mean an object x in the groupoid F (pt), or equivalently a stack morphism
Y(pt)→ F . We shall sometimes write abusively x ∈ F .

Given a point x of F , the group AutF (pt)(x) is called the stabilizer of x and is denoted by Stab(x).
Of course, this only defines it’s underlying set of points. A more correct definition of Stab(x) is
to say that it’s the sheaf T 7→ AutF (T )(x|T ), where x|T denotes the image of x in F (T ) under the
morphism F (pt)→ F (T ) induced by T → pt.

Given a stack F , it’s coarse moduli space τ0F is the sheafification of the functor T 7→ π0(F (T )),
where here π0 denotes the set of isomorphism classes of objects. One should think of τ0F as the
underlying space of F . In other words, τ0F is the thing we obtain after killing all the stabilizers
groups.

Example 11 [xtb] The coarse moduli space τ0BG is just a point. Indeed, let ∗T ∈ BG(T ) denote the
trivial bundle. Any G-principal bundle is T -locally trivial by definition. So for any element x ∈
π0(BG(T )) there exists a cover {Vi} of T such that x|Vi

= ∗Vi
. All the elements of π0(BG(T )) thus

get identified in the sheafification. For all T we have τ0BG(T ) = {∗}, in other words τ0BG = Y(pt).

Example 12 If X is a G-CW-complex, then τ0([X/G]) = Y(X/G). Since the four functors [ /G],
τ0, /G, and Y preserve the disjoint unions, pushouts, and colimit used to build G-CW-complexes,
it’s enough to treat the case X = Dn ×H\G. And indeed, we have [(Dn ×H\G)/G] = Dn × BH
by Example 8, and τ0(D

n ×BH) = Y(Dn) by example 11.
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1.3 CW-orbispaces

From now on, we will abuse notation and write X instead of Y(X).

Definition 13 [dwo] A CW-orbispace is a T -stack X of the form lim
−→

X(n), where each X(n) is obtained
from the previous one by a pushout [POs]

∐

j

(Sn−1 ×BGj) //
∐

j

(Dn ×BGj)

X(n−1) //
��

∐

αj

X(n).
��

(12)

Moreover, all attaching maps αj : Sn−1 × BGj → X(n−1) are required to induce closed inclusions
of stabilizer groups.
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