Page 467
Page 468
Page 469
Page 470
Page 471
Page 472
line 1: H should be K .
line -6 : It's more correct to replace $\mathrm{P}_{\mathrm{j}} \mathrm{j}$ by $\mathrm{P} \mathrm{j}^{\wedge \star}$ in the formula.
Page 473
line 1: D and $X(m)$ are defined on page 486.
line 10: The little square is a picture of the Young tableau with only one box.
line 10: The letters f and g now denote Young tableaux, where as 5
lines before they were used for functions on $\mathrm{S}^{\wedge} 1$.
line 11: The number Delta is defined on page 518.
line 13: The indices of $a^{\wedge *}$ are $g_{-} 1$ and f.
line 13: The first sum is indexed over all Young tableaux f _1 subject
to $h<f _1<g$.
The second sum is indexed over all Young tableaux h that are simultaneously obtainable by adding one box to g , or one box to $\mathrm{g}_{1} 1$. line -1 : The sum is indexed over all g that are obtainable by adding a box to f.

Page 474
line -11: "less refined" refers to the fact that the braiding map introduced here would still need to be corrected by a phase.

Page 475
line 12: The notation $L^{\wedge} A G$ is introduced on page 504.
Page 476
line 21: The third word of the line has an extra letter.
line -15. SU(N)_lell x SU(\ell)_N --> SU(Nell)_1 is more precise.
Page 477
Page 478
line 10: Note that \backslash lambda $\wedge ~ N ~ V ~ i s ~ t r i v i a l ~ a s ~ S U(N) ~ r e p r e s e n t a t i o n . ~ I t ~$ would only make sense to keep that term if we were dealing with $\mathrm{U}(\mathrm{N})$ representations.
line 20: >_h should be >_k.
line -3 : n should be N
Page 479
line 4: >_h should be >_k.
line 11: Remember that $\mathrm{g}>\mathrm{f}$ means that g is bigger than f by exactly one box. line 12: X_k means the same as $\mathrm{X} _\{[\mathrm{k}]\}$.

Page 480
line -12: Note that the element e_\{i_1\} \wedge e_\{i_2\} \wedge
contains "almost every" basis vector of the orthogonal of P, and only
finitely many from P.
Page 481
line 11: the first F_Q should be F_P.
line 11: The \mu_i were called Vambda_i in the previous proof.
Page 482
lines 14 and 15: See the equation on line -16 of page 501.
line -18: SU_\pm $(1,1)$ is a double cover of the group of Mobius transformations of S^1. $^{\wedge}$.
line -13: Note the (lalpha-Vbarlbeta $z)^{\wedge}\{-1\}$ is a square root of the derivative of $\mathrm{g}^{\wedge}\{-1\}$. Therefore, f is secretely a section of the
spinor bundle (1Omega^^1_ICC)^\{otimes 1/2\}.
line -2: "multiplication by z" refers to the scalar operator z times identity.
line -1 : The grading operator is $U_{-}\{-1\}$.
Page 483
line 1: The operator $U _z$ acts by $z^{\wedge} n$ on the "charge n " subspace of the Fock space. So the lemma says that LSU(N) preserves the charge.
line -16: This is the definition of \backslash mathcal\{L\}G.
line -13: Note that $\operatorname{Rot}\left(\mathrm{S}^{\wedge} 1\right)$ is not a subgroup of SU _lpm(1,1): compare
the formulas on line 18 and -13 of page 482 . The "correct" circle
action is the one coming from the maximal torus in $\operatorname{SU} \ \mathrm{lpm}(1,1)$. But since LSU(N) preserves the charge, the discrepancy is actually irrelevant.

Page 484
line 20: The T_n in the integral should be T.
line 21: T should be T_n.
line 21: T _ 0 is scalar because it commutes with $\left\langle U_{-} \downarrow\right.$, and H is
irreducible as \Gammalrtimes T - module.
line 22: Remove the sentence part "Tv cannot be a multiple of v and therefore".
Page 485
line 2: Note the weird definition: level I representations are defined
to be subreps of $\mathrm{F}_{\text {_ }} \mathrm{P}^{\wedge}$ \{lotimes I\}. It turns out that all positive
energy representations of LSU(N) occur as subreps of $F_{-} P^{\wedge}\{10 t i m e s ~ I\}$,
but this is not proved in this paper.
line -10: the dot denotes a right action of \gamma^1 on g .
line -3 : "lotimes I" should be added at the end of the right hand side.
Page 486
On this page, there is a big confusion between the two possible ways $\mathrm{z}=\mathrm{e}^{\wedge}\{i$ itheta $\}$ of parametrizing $\mathrm{S}^{\wedge 1}$. The operator d is then given by either -id/dltheta, or by $\mathrm{zd} / \mathrm{dz}$.
line 17: $e^{\wedge}\{i d\}$ should be $\left.e^{\wedge\{i l t h e t a ~} d\right\}$.
line 17: The theta in r_{-}ltheta is not the same as the theta in -id/dltheta. The former is an element of the group that acts, while the latter is the coordinate on $\mathrm{S}^{\wedge 1}$.
line -11: Note that most of the time, the expressions $\mathrm{e}_{-} \mathrm{j}(\mathrm{m})^{\wedge *}$ and e_i(m+n) anticommute. The expression for E_\{ij\}(n) can then be rewritten as a sum over Z.
line -5 : The second term should be $+\mathrm{m}(\mathrm{X}, \mathrm{Y}) \backslash$ delta_ $\{\mathrm{n}+\mathrm{m}, 0\} \mathrm{l}$.
lines -8 to -5 : The equations in (a), (b) and (c) depend linearly on a_\{ij\}. So they don't depend on the condition \sum a_\{ij\}E_\{ij\}<in Lie $\mathrm{U}(\mathrm{N})$, i.e., on the condition $\mathrm{a} _\{i \mathrm{ij}\}=-\mathrm{lbar} \mathrm{a}$ _\{ij\}.

Page 487
line 6. There's an extra comma after X.
line 12: It's in the equation two lines below that m is assumed to be non-negative.
line 12: "since $\operatorname{Vambda}(\mathrm{X}, \mathrm{Y})(\mathrm{m}, \mathrm{n})=-\mathrm{Vambda}(\mathrm{Y}, \mathrm{X})(\mathrm{n}, \mathrm{m})$ by
antisymmetry" is a better explanation.
Page 488
line 8: This estimate is not optimal. The optimal estimate would have an $s+1 / 2$ instead of the $s+1$. This is due to the fact that the estimate on line 15 is not optimal.
line 15: The optimal estimate involves a factor of the form $\mathrm{O}(\mathrm{Inl})+$ O(lsqrt \mu).
line -10: The first of the three X's should be lowercase.
lines -3 to -1 : That doesn't seem to get used in the argument.
Page 489
line 12: One may safely remove " $\mathrm{H}^{\wedge} 0$ \subset".
line 15: Recall that by definition (top of p. 485), a "level \ell"
positive energy representation is a summand of the \ell-th tensor
power of the Fock representation.
This is an annoying convention, since we'd like to know that *any*
projective (LSU(N) \times $\mathrm{S}^{\wedge 1}$)-rep differentiates to a projective (L^0 lg \rtimes \RR)-rep.
The latter is actually easy to show: use that $\operatorname{LSU}(\mathrm{N})$ rtimes $\mathrm{S}^{\wedge 1}$
contains lots of copies of $\operatorname{SU}(2)$ and $\operatorname{SU}(3)$, and that any
representation of a compact group decompose into finite dimensional pieces.
line 19: The last summand should be nlellddelta_\{ $\mathrm{n}+\mathrm{m}, 0\}(\mathrm{X}, \mathrm{Y})$.
Page 490
line 3: The expression for $\mathrm{H}^{\wedge} 0$ might be clearer with two extra pairs
of parentheses.
line 18: $H _f$ and $H _g$ are isomorphic iff there is an a such that
f _ $=$ =g_i+a for all i from 1 to N .
line -20 : The relevant lemma is on page 489.
Page 491
Page 492
ine 15: non-zero subrepresentations,...
line -10: The first occurrence of $\mathrm{H} _2$ should be an $\mathrm{H} _1$.
Page 493
line 1: Recall that in order to talk about self-adjoint operators, it is enough for the Hilbert space to be defined over the reals. Therefore it makes sense to talk about conjugate-linear self-adjoint operators.
line 15. For $\backslash x i$ in i K, the function $f(t)=\backslash d e l t a \wedge\{i t\} \mid x i$ also extends to the same same strip. But this time, it satisfies $f(t-i / 2)=$ -jf(t).
line 18: The statement includes a few unnecessary assumptions: The fact that j_1 and u_t commute follows from the equation on line 23. And the fact that $g(t)$ is bounded on the whole strip is a consequence of the fact that it's bounded on the compact interval [$[0,-\mathrm{i} / 2$], and that $u _t$ is unitary.
line 23: The two f's should be g's.
line -14: The argument on the bottom of page 497 provides an explanation of the words "By uniqueness of analytic extension". line - 14 The two f's should be g's.

Page 494
line 10: M _sa denotes the self-adjoint part of M (and not its skew-adjoint adjoint part).
line -12: The assumption JMJJsubseteq M^{\prime} is always true.
Page 495
line 4: "the lemma" refers to lemma 2.
line 17: The argument goes a bit fast here: one needs to argue that \Delta^\{it\} fixes the closure of N_\{sa\}\Omega.

Page 496
line 8: Here, Wassermann really means LLambda (not \tilde \Lambda). line 16: Note that M is not the same as the von Neumann algebra generated by the $\mathrm{a}(\mathrm{xi})$'s, for ki in K . The latter is simply $B\left(\mathrm{H}_{-} 0\right)$.

Page 497
line 5: The statement of the KMS condition used here is somewhat different than the one stated on page 493. It reads:
For xi in $\mathrm{K}+\mathrm{iK}$, the function $f(\mathrm{t}):==\operatorname{delta} \wedge\{i \mathrm{it}\}(\mathrm{xi})$ extends to the strip $-1 / 2 \vee e \operatorname{Im}(t) \vee e 1 / 2$, and satisfies $f(t-i / 2)=j s f(t)$, where s is the (unbounded) involution
whose +1 and -1 eigenspaces are K and iK respectively.
line -9 : The correct formula is $j=-i(2 P-1) F$
Page 498
line 7: Remove "the restriction of".
line 7: The fact that polynomials are dense is actually somewhat non-trivial (try to approximate $z^{\wedge}\{-1\}$ on the upper semi-circle by a
polynomial in z).
line 9: Holomorphic with respect to the new complex structure.
line 14: $<1 / 2$ should be $<1 / 4$.
line 15: $<1 / 2$ should be $<1 / 4$.
line 16: Parentheses are missing in the argument of p.
line 17: $<1 / 2$ should be $<1 / 4$.
line 21 : $<1 / 2$ should be $<1 / 4$.
line 23: The maximum modulus principe cannot be applied in this situation. The argument is therefore wrong. To see that the function f is bounded, one first uses the compactness of $[0,-\mathrm{i} / 2]$ to show that it is bounded on $[0,-\mathrm{i} / 2]$. One then shows that llf(t-is)II = IIf(-is)II, since the former can be obtained from the latter by applying the unitary u_t.
line 25: $F f(t)=+i P Q F p _t+\ldots$
line 26: $\mathrm{f}-1(\mathrm{t}-\mathrm{i} / 2)=+\mathrm{iPQFp} \mathrm{t}$
line -16: U is not unitary unless one inserts the factor \backslash sqrt $\{2\}$ in
front of the right hand side of $\operatorname{Uf}(x)=\ldots$. This omission has no further consequences.
line -12: "it is easy to check..." The way one computes the Fourier transform of $f_{-}+$is by approximating the integral by a complex contour integral, and then writing it as 1/(2\pi i) times the sum of the residues in the upper half plane.

Page 499
line 1: The expressions for $b(x)$ and $c(x)$ are off by a minus sign. line 7: In the equation $(1-r)^{\wedge}\{i t\} r \wedge\{-i t\}=(1-A)^{\wedge}\{i t\} A^{\wedge}\{-i t\}$, the left hand side uses the new complex structure, while the right hand side uses the old one.
line 10: In the expression for $(\mathrm{e}-\mathrm{f}) / 2$, the right hand side is off by a sign.
line 11: The useful formula is $W(P Q-Q P) W^{\wedge *}=(0 \& m(c) \backslash \mathrm{m}(c) \& 0)$.
lines -4 to -1 : The creation operators $a(\mid x i)$ used on page 496 are
defined with respect to the new complex structure, whereas the formulas used here are written with respect to the old one.

Page 500
line 15: An extra factor of sqrt(2) should be inserted to make the Cayley transform unitary.
line 17: Note that W is not the same as the W from page 498.
Page 501
line 19: The "exponential lemma" is on page 487.
line -3: $W=\backslash^{\wedge} \wedge\{N$ lell $\}=\left(\backslash C^{\wedge} N\right)^{\wedge}\{$ loplus \ell $\}$.
Page 502
line 1: The meaning of "compatible" is explained in the lemma on page 483.
line -6: One should remove the \otimes I.
line -5: In two places I should be $I^{\wedge} \mathrm{c}$.
line -2: p_{-}j should be replaced by its adjoint $p_{-} j$: H_j --> F_W.
Page 503
line 16: $N=p i _0\left(L_{-} I G\right) "$
Page 504
Page 505
line -8: remove the ($1-z$).
line -6: see page 508 for an explanation of the rational canonical form.
line -4 : see page 509 for an explanation of the symmetry property.
line -1: This formula is proved on page 513.
Page 506
line 2: Q is not the same as the Q on the previous page!
line 6: $A=P$.
line 9: the indices should be j instead of i.
line 9: the $\backslash m u$'s are not the same as the $\backslash m u$'s appearing in equation (1).
line 12: despite the appearance, the quotient of gamma functions is
the same as the one appearing on the bottom of the previous page:
indeed, the new $\backslash m u _j$'s are equal to \alpha plus the old $\backslash m u _j$'s.
line 13: \gamma should be \alpha.
line -7: Note that having equal eigenvalues is allowed.
line -1 : the extra n's are unnecessary but not wrong.
Page 507
lines -8 and -5: v_i should be \xi_i.

Page 508
line 6: It should be $c(t)=a(t)+b(t)$.
line 11: similar mistake: $b(t)=c(t)-a(t)$.
lines -14 to -7 : This part of the argument is completly upside down. The matrices P and Q constructed in that paragraph are the transposed of the ones appearing on lines 1 and 2. To fix the argument, replace lphi with v everywhere, and read all formulas from right to left.

Page 509
line 2: R should be $-R$.
line 3: $c(t)=a(t)+b(t)$.
line -12: \sum Vambda_i - \mu_i is automotically non-zero, see the corollary on page 511.
line -4 and -3 : The normalizations are not compatible with the normalizations introduced on page 505. To fix this, one should add $e^{\wedge}\left\{i \mid p i V l a m b d a _i\right\}$ in front of $z^{\wedge}\left\{V \operatorname{lambda_ i\} g(...)...~and~} e^{\wedge\left\{i \ p i l m u _j\right\}}\right.$ in front of $\left(z_{-} 1\right)^{\wedge} . . . h(\ldots) \ldots$
line -3 : the exponent of $(z-1)$ should be -\mu_j.
line -1 : One should add $e^{\wedge}\left\{i \ p i V l a m b d a _i\right\}$ on the left hand side, and $e^{\wedge}\left\{i l p i l m u _j\right\}$ in front of $\left(z_{-} 1\right)^{\wedge} \ldots$ on the right hand side.

Page 510
line 4: One should add $e^{\wedge}\left\{i \backslash p i\left(V a m b d a _i-\backslash m u _j\right)\right\}$ to the right hand side. line -8: \alpha_n-\alpha_\{n-1\} = (\chi_P(\lambda+n)-1)\alpha_\{n-1\}.

Page 511
line 1: $A=t+P$.
lines 1 to 6 . This proof is easier to understand if one starts reading it from line 5 .
lines 8 to 10: The letter chi should not be capitalized.
line -8: the second occurrence of Vambda_1 should be a Vambda_j. lines -10 to -8 : The exact set of conditions used in the argument on page 512 is:
$\backslash m u _1>$ \mu_j for all j not equal to 1;
Imu_j > Vambda_j for all j not equal to 1;
Vambda_1+1 > \mu_j for all j not equal to 1;
line -8: The above mentionned set of conditions does not imply \delta <0 (unless we also impose \mu_1 > Vambda_1).
line -6: remove ($1-z$).
line -4 remove \phi(x)\eta.
line -1 : the exponent -Vambda_i should be -Vambda_1.
line -1 : one should add an extra $z^{\wedge} n$ just after the summation symbol.

Page 512
line 1: The beta function identity can be proved by a change of variables $(x, y):=(z t, z(1-t))$ in the double integral defining \Gamma(a)\Gamma(b).
line 7: the inequalities should hold for i and j ranging from 2 to N .
line 9: The important case is are when z is large and negative.
line 13: remove (Izeta_j, leta).
line -6: The product should run over all $\mathrm{j} \backslash$ not $=1$.
Page 513
An important part of the argument is missing: one needs to should that U_0 is non-empty.
This can be done by picking $a(t)$ and $b(t)$ as on page 508 , such that the roots Vambda_1 > Vambda_2 > ... > Vambda_N of a(t) are interspersed with the roots of $b(t)$.
line $-19: z^{\wedge} n$ should be $z^{\wedge}\{-n\}$.
line -4: \xi \otimes f should be replaced by v lotimes $\backslash x i$, and f
should be replaced by v .
Page 514
line -8: (p_\square \otimes p_f) should be (p_\square \otimes p_f)^*.

Page 515
The constant A can be safely omitted since it is equal to 1 .
line 15: p _j should be $\mathrm{p} \mathrm{j}^{\wedge \star}$.
line 18: P_{-}j should be $P_{-} j^{\wedge *}$.
line -4: The formula for c_\{kh\} appears on page 506, modulo a
correction to be found on line 11 of page 518.
line -4: $\backslash m u _\{k h\}$ is given on line -16 of page 521 (see also the proposition on page 520).
line $-2: e^{\wedge}\{i \backslash m u \backslash t h e t a\}$ should be replaced by $e^{\wedge}\{-i \backslash m u \backslash t h e t a\}$.
Page 516
line 3: in the formula on the top of the page, u, v, vi, and leta should be taken to be free variables.
line 8: The two occurrences of F on this line refer to different things! line 9: One may safely omit the support conditions: they are not used in this proposition.
line 10: the last $e^{\wedge}\left\{i\right.$ itheta\} should be $e^{\wedge}\{-i l t h e t a\}$.
line 12: f_n g_\{-n\} should be replaced by f_\{-n\}g_n.
line 13: Once more, the last $e^{\wedge}\{i l$ theta $\}$ should be an $e^{\wedge}\{-i$ iltheta $\}$.
line -14: note that exchanging the two support conditions doesn't affect the argument.
line -12: the last $e^{\wedge}\{i$ iltheta $\}$ should be $e^{\wedge}\{-i \mid t h e t a\}$.
Page 517
line 1: This follows from the proposition on page 520 (see also line
-16 on page 521).
line 2: extra comma.
line 3: With the support conditions as stated above, the correct formula has an extra $e^{\wedge\left\{2 i \backslash m u _\{k h\} \backslash p i\right\} ~ a f t e r ~ t h e ~ s u m m a t i o n ~ s y m b o l . ~}$ Another way of fixing the formula is to take supp(g) before supp(f), going counterclockwise from 1.
line 4: $e^{\wedge}\{i \backslash m u l t h e t a\}$ should be $e^{\wedge}\{-i \backslash m u \backslash t h e t a\}$.
line 8: \tilde g \star f should be replaced by \tilde f \star g .
line 8: G_k should be G_h.
line 9: The useful formulas are e_\mu(\tilde $\left.\mathrm{f}^{*} \mathrm{~g}\right)=$ \tilde\{e_\{-\mu\}\}

* e_\mu g if $\operatorname{supp}(f)$ is before $\operatorname{supp}(g)$
and e_\mu(\tilde $\left.\mathrm{f}^{*} \mathrm{~g}\right)=\mathrm{e}^{\wedge}\{2 \backslash \mathrm{pi} i \backslash m u\} \backslash$ tilde\{e_\{-\mu\}\} * e_\mu g
is supp (g) is before supp(f).
line 16: the proposition is correct assuming that $\operatorname{supp}(\mathrm{g})$ is before supp(f).
Page 518
line 4: Replace "after" by "before".
lines 6,7 : The corollary on page 516 only used the fact that the supports of f and g are disjoint.
Similarly, the argument on the previous page only used the fact that the supports of f and g are disjoint and don't include 1.
line -13: The inner product is defined on the bottom of page 486.
line -5: This is twice the dual Coxeter number of $\operatorname{SU}(\mathrm{N})$, a fact that holds for all Lie algebras.
lines -1 and -2: The first summation symbol also applies to the second part of the formula.

Page 519
line 1: N lell $X(1)$ should be -lell $X(1)$.
lines 1,2 : Once again, the first summation symbol also applies to the second part of the formula.
line 3: In two places, N lell $X(1)$ should be replaced by -lell $X(1)$.
line 3: The last (0) should be (1).
line 4: A minus sign is missing from the last formula.
line 6: The minus sign should be removed from the first formula.

Page 520
line 13: The $1 / 2$ should be removed.
lines -12 and -11 : n should be -n , and -n should be n (twice).
Page 521
line 2: The X should be X_i (twice), and the pi_q should be pi_v.
line 2: The last X_i should be X_i lotimes 1.
line 3: The X_i should be 1 lotimes X_i.
line 6 : add "is the".
line -8: With the notation from page 518, "after" leads to $\operatorname{\text {nu}}$ _\{ij\}=
d_\{ij\}, and "before" leads to \nu_\{ij\} = c_\{ij\}.
line -5 : The sentence "and h permissible" should be added after " $h>g$ " (recall that the notation $\mathrm{h}>\mathrm{g}$ means that h is obtained by adding one single box to g).
line -3 : The subscript f should be a g. (here f is a function on $S^{\wedge} 1$, while g is a Young tableau!!).

Page 522
line 7 : the subscript f should be a g.
line 8: the subscript \square should be Vbarlsquare.
line 11: the subscript f should be a g; the subscript g should be an f ; and the subscript \square should be \barlsquare.
line 12: the subscript g should be an f .
line 16: The N is irrelevant and can be omitted.
line 16 : is decreasing.
lines -17, -16: The $\mathrm{h} _\mathrm{k}$ correspond to places where one can add a box,
while the $\mathrm{f}_{\mathrm{j}} \mathrm{j}$ correspond to places where one can remove a box. So
Wassemann got his north-west and south-east reversed.
lines $-9,-8$: the i and j should be interchanged.
line -5 : the i and j should be interchanged.
line -4 : it gives +1 .
line -4 : The correct sentence is "... that if h is non-permissible and
f is permissible, ..."
Page 523
line 5: Note that the result remains true if "after" is replaced by "before".
line 6: The sum is indexed over all $g_{-} 1$ sitting between f and h.
line 6: The coefficient $\backslash m u _\left\{g, g_{-} 1\right\}$ (which is equal to the quantity d_\{kh\} from pagre 518 , line 11) is non-zero except if g is permissible while g_1 is not permissible.
line 8: The fact that $\operatorname{dim}(\mathrm{W})=2$ is responsible for the label
"hypergeometric", as opposed to "generalized hypergeometric".
line 9: The indices of \backslash Omega should be two squares (as opposed to a
2x1 rectangle).
line 12: The indices of \backslash Omega should be two squares.
line 12: $\operatorname{\text {beta}}=2 /(\mathrm{N}+$ lell $)$.
line 14: The second and third g's should be g_1.
line 17: add " $0<$ " before the absolute values.
line 19 The indices of \Omega should be two squares.
line 20: The formula is maybe clearer is one inserts a \circ between T and (Slotimes I).
line -12: The product over all g_1' \neq g_1 consists of only one factor.
line -12 : The $g_{-} 1$ ' in the argument of the second gamma function should be a g_1.
Page 524
line 4: Note that Theorem C is very similar to Theorem A, but now g \not $=\mathrm{g} _$1.
line 11: Similarly, Theorem D is very similar to Theorem B, but now $g=g_{-} 1$.
line -20: \alpha = (\Delta_h + \Delta_f - 2\Delta_g) / 2(N + \ell).
line -16: once again, the two squares in the index of \backslash Omega should
not be touching each other.
line-12: the transport coeficient is $\mathrm{e}^{\wedge}\left\{-\mathrm{i} \mid \mathrm{p} i \backslash n u _\{\mathrm{nm}\}\right\}$.
line -11: the index should be lalpha instead of -lalpha.
line -10: the index should be -lalpha instead of \alpha.
line -3 : All the g_1's should be g's (and the very last one can be
removed from the inequality).
line -3 : the sum is over all permissible h.
line -2 : The " 1 " is an index of "f".
line -2 : The condition at the end is $h<f, f _1<g$ (which means $h<f$
$<\mathrm{g}$ and $\mathrm{h}<\mathrm{f}$ - $1<\mathrm{g}$).
line -2 : the sum is over all permissible f_1.
Page 525
line 9: The typos of the previous theorem reappear unchanged in the corollary.

Page 526

line 13: The last expressions should be yx\Omega.
line 17: The word "natural" is misleading. The unitary $U _$\phi is well defined up to phase, and becomes well defined given a choice of lift of \phi to the universal cover of $\operatorname{SU}(1,1)$.

Page 527
line 3: while x and z are elements of curly X and Z, y is an element of straight Y .
line 3: the lemma referred to is the "Hilbert space continuity lemma".
line 8: "where the sum runs over all permissible h satisfying $h>$
$\mathrm{g}, \mathrm{g}_{-} 1^{\prime \prime}$ is maybe more clear (and recall that $\mathrm{h}>\mathrm{g}$ means that h is obtained by adding one single box to h).
line 9: the sum runs over all permissible f_1 satisfying $h<f _1<g$.
line 15: the sum is indexed over all permissible g such that $g>f$.
Page 528
line 3: The first sum is over all (permissible) g_1 subject to g_1 >
f . The second sum is indexed over all (permissible) h, k, subject to f
$<\mathrm{g}, \mathrm{g}_{1} 1, \mathrm{k}<\mathrm{h}$, and the big parentheses are misplaced.
line 4: c.f. page 503.
line 8: The sum is over $\mathrm{g}_{-} 1, \mathrm{~h}, \mathrm{k}$.
line 9: "taking all but one leta_\{g_1\} equal to zero, and the
remaining one not in the kernel of $\mathrm{a}_{-}\left\{\mathrm{h}, \mathrm{g}_{\mathbf{\prime}} 1\right\}^{\prime \prime}$
line 10: Here, there is a mistake. Following the argument, we get that
|sum_\{h:h>g,g_1\}\ambda_\{g_1\}\nu_h|mu_\{g_1\}|la_\{h,g_1\}|eta_\{g_1\}|॥2
Ige 0 .
We are free to pick leta_\{g_1\} in $\mathrm{H}_{-}\left\{\mathrm{g}_{-} 1\right\}$ and a in L^2 of the upper
half circle. So by von Neuman density, we're free to pick
a_\{h,g_1\}leta_\{g_1\} in the direct sum of H_h, indexed over all h > g,g_1.
Picking it so that all but one component vanishes, we get
Vambda_\{g_1\}\nu_hlmu_\{g_1\} \ge 0. We know that Vambda_\{g_1\}>0 and
that $\backslash n u _h$ and $\backslash m u _\left\{g_{-} 1\right\}$ are non-zero, hence $\backslash n u _h \backslash m u _\left\{g_{-} 1\right\}>0$.
line 10: Despite the notation, \nu_h also depends on g, g_1 and f.
Similarly, h_k also depends on h, g and f.
line 11: Once again, despite the notation, $\operatorname{Inu} _\mathrm{h}$ and $\backslash m u _\left\{g_{-} 1\right\}$ depend
on all of $\mathrm{f}, \mathrm{g}, \mathrm{g} _1$ and h .
line 13: sum over g : $g>f$
line 14: sum over $\mathrm{g}, \mathrm{h}, \mathrm{k}$: $\mathrm{f}<\mathrm{g}, \mathrm{k}<\mathrm{h}$ (by which I mean $\mathrm{f}<\mathrm{g}<\mathrm{h}$ and $\mathrm{f}<\mathrm{k}<\mathrm{h}$).
line 17: First sum over i, j. Second sum over i.
line 18: direct sum over $k: k>f$.
line 20: sum over g,h,k: f<g,k<h.
line -9: sum over g,h:f<g, g_1<h.
line -8: sum over $\mathrm{h}>\mathrm{g}_{-} 1$.
Page 529
line 17: The title of the section is misleading: we're doing Connes fusion with the positive energy representation whose lowest energy subspace is an exterior power of $\mathrm{C}^{\wedge} \mathrm{N}$ (i.e. the vector representation of $\operatorname{SU}(\mathrm{N})$).
line 21: The alpha doesn't havea minus.
line 7: It will turn out that Vambda(g) is never null.
Page 530
line 8: the notation ">_k f" is wrong since we don't want to include yet the condition that the blocks are in different rows.

line -14: "vectors in"
line -12: The first equation should be understood as an equality
between operators from loplus_\{f_1:f_1>f\}H_\{f_1\} to H_\{f'\}.
line -5: sum over paths P,Q.
line -2 : k is a subscript of $>$.
Page 531
line 2: The star should be on the b.
line 12: The sum is over paths P and Q. The index of a' should be a Q.
line 14: The very first occurrence of Q_1 should be a Q.
Page 532
line 1: This non-strict inclusion will soon turn out be an equality.
Page 533
line -10: \backslash Lambda_0 is $(N+\backslash e l l)$ times the lattice $\left\{\left(\mathrm{m}_{-} 1\right)\right.$ I sum_i $\left.\mathrm{m}_{\mathrm{i}} \mathrm{i}=0\right\}$.
Page 534
line 13: In Lie theory, it is very standard to denote this element Idelta by the letter \rho.
line -12: The X notation comes from page 478/479. We always have $X=$ Ichi.
line -12: The notation is a little bit abusive since
Isigma(f+\delta)-Idelta is a signature (= not a positive weight for SU(N)).

Page 535
line 3: These characters are the elementary symmetric functions.
line 4: A priori, it is not clear that the map S lotimes $\backslash C$---> $\backslash C^{\wedge} \top$
is injective. One first needs to show that that map is surjective, and then count dimensions.
line 7 : "coincides" has not been proven yet: only "maps onto".
line -20: The notation $\backslash R$ has been introduced on page 474.
line -18: "character" is an unfortunate name. "character of the lowest
energy subspace" is a better description.
Page 536

