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Abstract

These are notes for the uu student seminar on algebraic quantum
field theory of Spring 2013. We give Martin Florig’s proof of Borchers’
commutation relations theorem.

1 Introduction
Borchers’ theorem will be used next week in the proof of the Bisognano-Wichmann
theorem.

2 Analyticity of complex functions on the real
line

Theorem 2.1 (Symmetry principle). Let G be an open subset of C that is
symmetric with respect to the real axis and write G+ for the part that lies in
the upper half-plane, G− for the part that lies in the lower half-plane and G0

for its intersection with the real axis. Let f+ and f− be continuous functions
on G+ ∪ G0 and G− ∪ G0 respectively which agree on G0 and such that f+ is
analytic on G+ and f− is on G−. Then f+ and f− glue to an analytic function
f on G.

Proof. We need to prove that f is analytic on G0. Let D be a connected open
subset of G centered around a point on G0. Then we wish to show that f is
analytic on D by showing that for every closed triangle T contained in D we
have

∮
T
f(z) dz = 0. We may assume that T only shares one edge or vertex with

G0, otherwise we could cut T up into smaller triangles which do satisfy this
property.
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If z, z0 lie in G−, then z, z0 lie in G+, where f is analytic. So we can develop
f as a power series around z0, and filling in z gives

f(z) =
∑

an(z − z0)n.

Then
f(z) =

∑
an(z − z0)n,

so f(z) is analytic.
g(z) := f(z)− f(z) is analytic on G if f is analytic on G. It is zero on G0,

so it is zero on all of G. So f(z) = f(z) for all z ∈ G.

Theorem 2.2 (Schwarz’ reflection principle). Let f be a continuous function on
G+ ∪G0 that is analytic on G+ and real on G0. Then f extends to an analytic
function F on G.

Proof. Define for z ∈ G−
F (z) := f(z).

Then F (z) is analytic on G− and continuous on G− ∪ G0. Now apply the
symmetry principle.

This is the one-variable case of the edge-of-the-wedge theorem.

3 Borchers’ theorem
Recap of Tomita-Takesaki. Let M be a von Neumann algebra acting on a
Hilbert space H with cyclic and separating vector Ω. Then define two anti-linear
operators on the dense subsets MΩ and M ′Ω of H respectively by

S0(xΩ) := x∗Ω, S0(xΩ) := x∗Ω

for x ∈M and x′ ∈M ′. These are well-defined because Ω is separating for both
M andM ′. It turns out that S0 and F0 are closeable, and we denote their closures
by S and F . Let ∆ = S∗S be the unique positive and self-adjoint operator and
J be the unique anti-unitary operator occurring in the polar decomposition of
S: S = J∆1/2. We have JΩ = Ω = ∆Ω, J2 = id, J∗ = J , J∆1/2 = ∆−1/2J and
∆itJ = J∆it.

F = S∗ = (J∆1/2)∗ = ∆1/2J = J∆−1/2,

so ∆−1 is the modular operator of the pair (M ′,Ω). Now the main theorem of
Tomita-Takesaki theory claims that

JMJ = M ′ and ∆itM∆−it = M for all t ∈ R.

Theorem 3.1 (Borchers’ theorem). Let M be a von Neumann algebra acting
on a Hilbert space H with cyclic and separating vector Ω. Let ∆ and J be
the associated modular operator and modular conjugation respectively. Suppose
that U : R→ B(H) is a strongly continuous one-parameter unitary group, with
positive generator, that leaves Ω fixed and such that

U(a)MU(−a) ⊆M (1)

2



for all a ≥ 0. Then for all a, t ∈ R,

∆itU(a)∆−it = U(e−2πta)

and
JU(a)J = U(a)∗.

Borchers’ original proof used the theory of several complex variables, but
Martin Florig gave a much simpler proof using only the theory of one complex
variable and this is the one we will give. It is very much in the spirit of the proof
of the Reeh-Schlieder theorem that we saw last week. The idea is that we wish
to show that the following inner products are equal for all x ∈M , x′ ∈M ′ and
t ∈ R:

〈x′Ω,∆itU(e2πta)∆−itxΩ〉 = 〈x′Ω, U(a)xΩ〉.

Since the sets {x′Ω : x′ ∈ M ′} and {xΩ : x ∈ M} are dense in H, this will
show the first commutation relation. The trick is now to keep x and x′ fixed,
and see the left hand side as a function f(t) on R. Then the right hand side is
nothing but f(0). So we define a function f(t) on R as the left hand side, we
wish to prove that it is constant and then compare its value at 0 with that at
an arbitrary t ∈ R. Again, as we saw last week, the shortest path between two
truths in the real domain passes through the complex domain. We will extend f
to an analytic function on the entire complex plane and prove that it is bounded.
Then by Liouville’s theorem, f will be constant, in particular on the real line.
Moreover, comparing that value of f at i

2 to its value at 0 will give us the second
commutation relation also.

Proof. We may assume that a ≥ 0, since in that case the commutation equations
for −a are the adjoints of the equations for a. In the proof of the Reeh-Schlieder
theorem we defined our function on the complex plane by defining functions on
the upper and the lower half plane, and then gluing these together. What we
will do is cut up the complex plane into infinitely many strips of height 1

2 , define
functions on them, and then glue these together. Fix x ∈M and x′ ∈M ′. On
the first strip S := {z ∈ C : 0 ≤ Im z ≤ 1

2} define the following two functions

fU (z) := 〈x′Ω,∆izU(e2πza)∆−izxΩ〉
fV (z) := 〈x′Ω,∆izV (e2πza)∆−izxΩ〉,

where V (a) := JU(−a)J . (Recall Stone’s theorem: if U : R→ B(H) is a strongly
continuous one-parameter unitary group, then there exists a unique self-adjoint
operator A such that U(t) = eitA for all t ∈ R. This can thus be used to extend
U to the complex plane.)

Note that V is also a one-parameter group, since V (a+b) = JU(−(s+ t))J =
JU(−s)U(−t)J = JU(−s)J2U(−t)J = V (a)V (b). Although J is anti-linear and
anti-unitary, because it appears twice in V , V (a) is linear and unitary. Since J
and U leave Ω fixed, so does V . If x0 is the infinitesimal generator of U , then we
have

lim
t→0

U(t)h− h
t

= ix0h.
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So then we find the infinitesimal generator of V by

−i lim
a→0

JU(−a)Jh− h
a

= −i lim
a→0

JU(−a)Jh− J2h

a

= −iJ lim
a→0

U(−a)Jh− Jh
a

= −iJ(−ix0)Jh.

Now since J is anti-linear, −iJ(−ix0)Jh = −i · iJx0Jh = Jx0Jh. So Jx0J
is the infinitesimal generator of V . We have 〈Jx0Jh, h〉 = 〈x0Jh, Jh〉 ≥ 0, so
Jx0J is positive. Furthermore, V also satisfies (1). By the main theorem of
Tomita-Takesaki theory we namely have JMJ = M ′, and if y ∈M and y′ ∈M ′,
then for all a ≥ 0

[U(−a)y′U(a), y] = U(−a)[y′, U(a)yU(−a)]U(a) = 0

by (1). So U(−a)M ′U(a) ⊆M ′, and again applying JM ′J = M , gives V (a)MV (−a) ⊆
M . So V satisfies all the properties that we assumed of U .

The function fU is continuous and bounded on S and analytic on its interior.
Since V has identical properties to U , the same holds for fV .

Now define

f(z) :=

{
fU (z − in) if n ≤ Im z ≤ n+ 1

2 for some n ∈ Z,
fV (z − i(n+ 1

2 )) if n+ 1
2 ≤ Im z ≤ n+ 1.

The strips in which we cut up the complex plane are closed though, so they
overlap on the lines {z ∈ C : Im z ∈ 1

2 + Z} + {z ∈ C : Im z ∈ Z}. We need to
check that fU (t + i/2) = fV (t) and fV (t + i/2) = fU (t) for all t ∈ R. We will
only prove the first equation, since the second one is done identically.

We have

∆i(t+i/2)U(e2π(t+i/2)a)∆−i(t+i/2)xΩ = ∆it∆−1/2U(−e2πta)∆−it∆1/2xΩ

= ∆it∆−1/2U(−e2πta)J∆−itx∗Ω.

For the second equation, we plugged J2 = id between ∆−it and ∆1/2xΩ, used
that J∆1/2 = S and that S(xΩ) = x∗Ω, and then that ∆−it and J commute.
Next, we use that JV (a) = U(−a)J for all a ∈ R and that ∆−1/2J = S:

∆it∆−1/2U(−e2πta)J∆−itx∗Ω = ∆itSV (e2πta)∆−itx∗Ω.

Now, since ∆ and V leave Ω fixed, so does the product ∆itV (e2πta)∗. We plug
this between ∆it and Ω:

∆itSV (e2πta)∆−itx∗Ω = ∆itSV (e2πta)∆−itx∗∆itV (e2πta)∗Ω.

We now see a left-to-right symmetry appearing. Also, by the main theorem of
Tomita-Takesaki theory and since V also satisfies (1), we have that V (e2πta)∆−itx∗∆itV (e2πta)∗

is an element of M . Since S(yΩ) = y∗Ω for all y ∈M ,

∆itSV (e2πta)∆−itx∗∆itV (e2πta)∗Ω = ∆itV (e2πta)∆−itx∆itV (e2πta)∗Ω.

Now we can remove ∆itV (e2πta)∗ again, and we finally obtain

∆itV (e2πta)∆−itx∆itV (e2πta)∗Ω = ∆itV (e2πta)∆−itxΩ.
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This shows that fU (t+ i/2) = fV (t) for all t ∈ R. The check fV (t+ i/2) = fU (t)
is done in the exact same way, so we now know that f is well-defined on
the whole of C. By the Symmetry principle, f is also analytic on the lines
{z ∈ C : Im z ∈ 1

2 + Z} + {z ∈ C : Im z ∈ Z}, so f is analytic on the whole of C.
Because fU and fV are bounded on S, f is bounded on the whole of C, so by
Liouville’s theorem it must be constant. Also,

〈x′Ω, U(a)xΩ〉 = fU (0) = fU (i/2) = fV (0) = 〈x′Ω, V (a)xΩ〉 = 〈x′Ω, JU(−a)JxΩ〉,

so the second commutation relation follows.

4 The Bisognano-Wichmann theorem
Let (A,H,Ω) be a local, Möbius covariant net of von Neumann algebras on the
circle. Let I ∈ I be an interval on the circle and ∆I and JI the modular operator
and the modular conjugation associated to (A(I),Ω).

Exercise: show, using Borchers’ theorem, that U(τI(s)) commutes with
zI(t) := ∆it

I U(δI(2πt)) for all s, t ∈ R. Show also (which doesn’t use Borchers’
theorem) that U(g)zI(t)U(g)∗ = zgI(t) for all g in the Möbius group and t ∈ R.

Theorem 4.1 (Bisognano-Wichmann theorem). Let I ∈ I be an interval on
the circle and ∆I and JI the modular operator and the modular conjugation
associated to (A(I),Ω). Then we have for all t ∈ R

∆it
I = U(δI(−2πt))

and
JI = U(rI).
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