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Abstract

These are notes for the uu student seminar on algebraic quantum
field theory of Spring 2013. We give Martin Florig’s proof of Borchers’
commutation relations theorem.

1 Introduction
Borchers’ theorem will be used next week in the proof of the Bisognano-Wichmann
theorem.

2 Analytically extending complex functions across
the real line

Theorem 2.1 (Symmetry principle). Let G be an open subset of C which
intersects the real axis and write G+ for the part that lies in the upper half-plane,
G− for the part that lies in the lower half-plane and G0 for its intersection with
the real axis. Let f+ and f− be continuous functions on G+ ∪G0 and G− ∪G0

respectively which agree on G0 and such that f+ is analytic on G+ and f− is on
G−. Then f+ and f− glue together as an analytic function f on G.

Proof. All we need to do is prove that f is analytic on G0. We will do this via
Morera’s theorem. Let D be a connected open subset of G centered around a
point on G0. Then we wish to show that f is analytic on D by showing that for
every closed triangle T contained in D we have

∮
T
f(z) dz = 0. We may assume

that T only shares one edge or vertex with G0, otherwise we could cut T up into
smaller triangles which do satisfy this property.
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If z, z0 lie in G−, then z, z0 lie in G+, where f is analytic. So we can develop
f as a power series around z0, and filling in z gives

f(z) =
∑

an(z − z0)n.

Then
f(z) =

∑
an(z − z0)n,

so f(z) is analytic.
g(z) := f(z)− f(z) is analytic on G if f is analytic on G. It is zero on G0,

so it is zero on all of G. So f(z) = f(z) for all z ∈ G.

Theorem 2.2 (Schwarz’ reflection principle). Let f be a continuous function on
G+ ∪G0 that is analytic on G+ and real on G0. Then f extends to an analytic
function F on G.

Proof. Define for z ∈ G−
F (z) := f(z).

Then F (z) is analytic on G− and continuous on G− ∪ G0. Now apply the
symmetry principle.

This is the one-variable case of the edge-of-the-wedge theorem.

3 Borchers’ theorem
Let us recall the setup of Tomita-Takesaki theory.

Let M be a von Neumann algebra acting on a Hilbert space H with cyclic
and separating vector Ω. Then define two anti-linear operators on the dense
subsets MΩ and M ′Ω of H respectively by

S0(xΩ) := x∗Ω, F0(x′Ω) := x′∗Ω

for x ∈M and x′ ∈M ′. These are well-defined because Ω is separating for both
M andM ′. It turns out that S0 and F0 are closeable, and we denote their closures
by S and F . Let ∆ = S∗S be the unique positive and self-adjoint operator and
J be the unique anti-unitary operator occurring in the polar decomposition of
S: S = J∆1/2. We list a few of their basic properties that will be needed later.

JΩ = Ω = ∆Ω, J2 = id, J∗ = J , J∆1/2 = ∆−1/2J and ∆itJ = J∆it. Also,

F = S∗ = (J∆1/2)∗ = ∆1/2J = J∆−1/2,

so ∆−1 is the modular operator of the pair (M ′,Ω). Now the main theorem of
Tomita-Takesaki theory claims that

JMJ = M ′ and ∆itM∆−it = M for all t ∈ R.

Theorem 3.1 (Borchers’ theorem). Let M be a von Neumann algebra acting
on a Hilbert space H with cyclic and separating vector Ω. Let ∆ and J be the
associated modular operator and modular conjugation respectively. Suppose that
U : R→ B(H) is a strongly continuous one-parameter unitary group, that leaves
Ω fixed and such that

U(a)MU(−a) ⊆M (1)
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for all a ≥ 0. If P is the infinitesimal generator of U , and we have ±P ≥ 0, then
for all a, t ∈ R,

∆itU(a)∆−it = U(e∓2πta)

and
JU(a)J = U(a)∗.

Borchers’ original proof used the theory of several complex variables, but
Martin Florig gave a much simpler proof using only the theory of one complex
variable and this is the one we will give. It is very much in the spirit of the proof
of the Reeh-Schlieder theorem that we saw last week. The idea is that we wish
to show that the following inner products are equal for all x ∈M , x′ ∈M ′ and
t ∈ R:

〈x′Ω,∆itU(e2πta)∆−itxΩ〉 = 〈x′Ω, U(a)xΩ〉.
Since the sets {x′Ω : x′ ∈ M ′} and {xΩ : x ∈ M} are dense in H, this will
show the first commutation relation. The trick is now to keep x and x′ fixed,
and see the left hand side as a function f(t) on R. Then the right hand side is
nothing but f(0). So we define a function f(t) on R as the left hand side, we
wish to prove that it is constant and then compare its value at 0 with that at
an arbitrary t ∈ R. Again, as we saw last week, the shortest path between two
truths in the real domain passes through the complex domain. We will extend f
to an analytic function on the entire complex plane and prove that it is bounded.
Then by Liouville’s theorem, f will be constant, in particular on the real line.
Moreover, comparing that value of f at i

2 to its value at 0 will give us the second
commutation relation also.

Proof. We may assume that P ≥ 0, because if it is negative, then we replace
M by M ′ and U(a) by U(−a). Here, we use that ∆−1 and J are the modular
operator and conjugation associated to M ′.

We may assume that a ≥ 0, since in that case the commutation equations
for −a are the adjoints of the equations for a. In the proof of the Reeh-Schlieder
theorem we defined our function on the complex plane by defining functions on
the upper and the lower half plane, and then gluing these together. What we
will do is cut up the complex plane into infinitely many strips of height 1

2 , define
functions on them, and then glue these together. Fix x ∈M and x′ ∈M ′. On
the first strip S1/2 := {z ∈ C : 0 ≤ Im z ≤ 1

2} define the following two functions

fU (z) := 〈x′Ω,∆izU(e2πza)∆−izxΩ〉
fV (z) := 〈x′Ω,∆izV (e2πza)∆−izxΩ〉,

where V (a) := JU(−a)J . (Recall Stone’s theorem: if U : R→ B(H) is a strongly
continuous one-parameter unitary group, then there exists a unique self-adjoint
operator A such that U(t) = eitA for all t ∈ R. This can thus be used to extend
U to the complex plane.)

Note that V is also a one-parameter group, since V (a+b) = JU(−(s+ t))J =
JU(−s)U(−t)J = JU(−s)J2U(−t)J = V (a)V (b). Although J is anti-linear and
anti-unitary, because it appears an even number of times in V (a), V (a) is linear
and unitary. Since J and U leave Ω fixed, so does V . If x0 is the infinitesimal
generator of U , then we have

lim
t→0

U(t)h− h
t

= ix0h.
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So then we find the infinitesimal generator of V by

−i lim
a→0

JU(−a)Jh− h
a

= −i lim
a→0

JU(−a)Jh− J2h

a

= −iJ lim
a→0

U(−a)Jh− Jh
a

= −iJ(−ix0)Jh.

Now since J is anti-linear, −iJ(−ix0)Jh = −i · iJx0Jh = Jx0Jh. So Jx0J
is the infinitesimal generator of V . We have 〈Jx0Jh, h〉 = 〈x0Jh, Jh〉 ≥ 0, so
Jx0J is positive. Furthermore, V also satisfies (1). By the main theorem of
Tomita-Takesaki theory we namely have JMJ = M ′, and if y ∈M and y′ ∈M ′,
then for all a ≥ 0

[U(−a)y′U(a), y] = U(−a)[y′, U(a)yU(−a)]U(a) = 0

by (1). So U(−a)M ′U(a) ⊆M ′, and again applying JM ′J = M , gives V (a)MV (−a) ⊆
M . So V satisfies all the properties that we assumed of U .

The function fU is continuous and bounded on S1/2 and analytic on its
interior. Since V has identical properties to U , the same holds for fV .

Now define the following function with period i on the whole complex plane:

f(z) :=

{
fU (z − in) if n ≤ Im z ≤ n+ 1

2 for some n ∈ Z,
fV (z − i(n+ 1

2 )) if n+ 1
2 ≤ Im z ≤ n+ 1.

The strips in which we cut up the complex plane are closed though, so they
overlap on the lines {z ∈ C : Im z ∈ 1

2 + Z} and {z ∈ C : Im z ∈ Z}. For f to be
well-defined, we need to check that

fU (t+ i/2) = fV (t) and fV (t+ i/2) = fU (t) (2)

for all t ∈ R. Let us prove the first equality. We have

∆i(t+i/2)U(e2π(t+i/2)a)∆−i(t+i/2)xΩ = ∆it∆−1/2U(−e2πta)∆−it∆1/2xΩ

= ∆it∆−1/2U(−e2πta)J∆−itx∗Ω.

For the second equation, we plugged J2 = id between ∆−it and ∆1/2xΩ, used
that J∆1/2 = S and that S(xΩ) = x∗Ω, and then that ∆−it and J commute.
Next, we use that JV (a) = U(−a)J for all a ∈ R and that ∆−1/2J = S:

∆it∆−1/2U(−e2πta)J∆−itx∗Ω = ∆itSV (e2πta)∆−itx∗Ω.

Now, since ∆ and V leave Ω fixed, so does the product ∆itV (e2πta)∗. We plug
this between ∆it and Ω:

∆itSV (e2πta)∆−itx∗Ω = ∆itSV (e2πta)∆−itx∗∆itV (e2πta)∗Ω.

We now see a left-to-right symmetry appearing. Also, by the main theorem of
Tomita-Takesaki theory and since V also satisfies (1), we have that V (e2πta)∆−itx∗∆itV (e2πta)∗

is an element of M . Since S(yΩ) = y∗Ω for all y ∈M ,

∆itSV (e2πta)∆−itx∗∆itV (e2πta)∗Ω = ∆itV (e2πta)∆−itx∆itV (e2πta)∗Ω.
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Now we can remove ∆itV (e2πta)∗ again, and we finally obtain

∆itV (e2πta)∆−itx∆itV (e2πta)∗Ω = ∆itV (e2πta)∆−itxΩ.

This shows that fU (t+ i/2) = fV (t) for all t ∈ R. The check fV (t+ i/2) = fU (t)
is done in the exact same way, so we now know that f is well-defined on
the whole of C. By the Symmetry principle, f is also analytic on the lines
{z ∈ C : Im z ∈ 1

2 + Z} and {z ∈ C : Im z ∈ Z}, so f is analytic on the whole of
C. Because fU and fV are bounded on S, f is bounded on the whole of C, so by
Liouville’s theorem it must be constant. The second commutation relation also
follows, but now from comparing the value of f at z = 0 with that at z = i/2:

〈x′Ω, U(a)xΩ〉 = fU (0)

= fU (i/2)

= fV (0)

= 〈x′Ω, V (a)xΩ〉 = 〈x′Ω, JU(−a)JxΩ〉,

where we used that f is constant for the second equation and the first relation
in (2) for the third.

4 The Bisognano-Wichmann theorem
Notation: S1

+ and S1
− for upper and lower semi-circle respectively.

• Notice that δ(t)S1
+ = S1

+ for all t ∈ R. We then also have for all intervals
I ∈ I that δI(t)I = I. Choose namely a g ∈ Mob such that I = gS1

+. Then

δI(t)I = gδ(t)g−1I = gδ(t)S1
+ = gS1

+ = I.

• We have R(π)δ(t)R(π)−1 = δ(−t), so for all intervals I ∈ I,

δI′(t) = gR(π)δ(t)R(π)−1g−1 = gδ(−t)g−1 = δI(−t).

• Notice that τ(t)S1
+ ⊆ S1

+ for t ≥ 0 and τ(t)S1
− ⊆ S1

− for t ≤ 0. So also
τI(t)I ⊆ I and τI′(−t)I ⊆ I for t ≥ 0.

• We have δ(s)τ(t) = τ(est)δ(s) for all s, t ∈ R. The same equality holds if
we give δ and τ subscripts I.

Theorem 4.1. Let U be a strongly continuous unitary representation of Mob
such that the infinitesimal generator of the rotation one-parameter group U(R(·))
is positive. Then the generators of the one-parameter groups U(τI(·)) are positive,
and the generators of the one-parameter groups U(τI′(−·)) are negative.

Let (A,H,Ω) be a local, Möbius covariant net of von Neumann algebras on
the circle. Let I ∈ I be an interval on the circle and ∆I and JI the modular
operator and the modular conjugation associated to (H,Ω,A(I)).

By the above theorem, the one-parameter unitary groups U(τI(·)) and
U(τI′(−·)) satisfy the requirements of Borchers’ theorem for the algebra A(I).

Recall that, by locality, for every interval I ∈ I we have A(I ′) ⊆ A(I)′ and
A(I) ⊆ A(I ′)′. Haag duality claims that these inclusions are equalities.
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Theorem 4.2 (Haag duality). For all intervals I ∈ I we have A(I ′) = A(I)′.

Proof. It is sufficient to prove that A(S1
−) = A(S1

+)′ by Möbius covariance of
the net A. If we namely know this, then choose for an arbitrary interval I ∈ I
an element g ∈ Mob such that I = gS1

+. Then

A(I ′) = A(gS1
−)

= U(g)A(S1
−)U(g)∗

= U(g)A(S1
+)′U(g)∗

=
(
U(g)A(S1

+)U(g)∗
)′

= A(gS1
+)′ = A(I)′.

We know by locality that A(S1
−) ⊆ A(S1

+)′. For the reverse inclusion, start
by writing J+ for the modular conjugation of A(S1

+). Then we know by the main
theorem of Tomita-Takesaki theory that conjugating A(S1

+) with J+ gives you
its commutant. We prove that the same holds if we conjugate A(S1

−):

J+A(S1
−)J+ = J+A(R(π)S1

+)J+

= J+U(R(π))A(S1
+)J+U(R(π))∗J+

= U(R(π))J+A(S1
+)J+U(R(π))∗

= U(R(π))A(S1
+)′U(R(π))∗

=
(
U(R(π))A(S1

+)U(R(π))∗
)′

= A(R(π)S1
+)′

= A(S1
−)′.

Here, we used Borchers’ theorem for the third equality and the main theorem of
Tomita-Takesaki theory for the fourth.

Next, we use the second inclusion A(S1
+) ⊆ A(S1

−)′ given to us by locality,
and write

A(S1
+)′ = J+A(S1

+)J+ ⊆ J+A(S1
−)′J+ = J+J+A(S1

−)J+J+ = A(S1
−).

Exercise: show, using Borchers’ theorem, that U(τI(s)) commutes with
zI(t) := ∆it

I U(δI(2πt)) for all s, t ∈ R. Show also (which doesn’t use Borchers’
theorem) that U(g)zI(t)U(g)∗ = zgI(t) for all g in the Möbius group and t ∈ R.

Note that since δI preserves I, by Möbius covariance, for all t ∈ R

U(δI(t))A(I)U(δI(t))
∗ = A(δI(t)I) = A(I).

So x 7→ U(δI(2πs))xU(δI(2πs))
∗ is an automorphism of A(I).

Theorem 4.3 (Bisognano-Wichmann theorem). Let I ∈ I be an interval on
the circle and ∆I and JI the modular operator and the modular conjugation
associated to (A(I),Ω). Then we have for all t ∈ R

∆it
I = U(δI(−2πt)).

Moreover, U extends to an anti-unitary operator of Mob± such that

JI = U(rI).
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For all g ∈ Mob± we again have Möbius covariance

U(g)A(I)U(g)∗ = A(gI).

Proof. Define for all t the unitary operator zI(t) := ∆it
I U(δI(2πt)). We wish to

show that this is the identity operator.
To prove that this is a one-parameter unitary group we need to show that for

s, t ∈ R we have ∆it
I U(δI(2πs)) = U(δI(2πs))∆

it
I . Since x 7→ U(δI(2πs))xU(δI(2πs))

∗

is an automorphism of A(I), U(δI(2πs)) induces an automorphism of the
triple (H,Ω,A(I)). By functoriality of the modular operators, we then have
U(δI(2πs))∆

it
I U(δI(2πs))

∗ = ∆it
I , as desired.

Next, we show that U(τI(s)) commutes with zI(t) for all s, t ∈ R. We use
that δ(s)τ(t) = τ(est)δ(s) to write

zI(t)U(τI(s)) = ∆it
I U(δI(2πt))U(τI(s)) = ∆it

I U(τI(e
2πts))U(δI(2πt))

Now we use that the strongly continuous one-parameter unitary group U(τI(·))
satisfies the conditions of Borchers’ theorem. Therefore, ∆it

I U(τI(e
2πts)) =

U(τI(s))∆
it
I . This shows that zI(t)U(τI(s)) = U(τI(s))zI(t). Since also U(τI′(−·))

satisfies the conditions of Borchers’ theorem, also U(τI′(s)) commutes with zI(t):

δ(2πt)τS1
−

(s) = δ(2πt)R(π)τ(s)R(π)−1

= R(π)δ(−2πt)τ(s)R(π)−1

= R(π)τ(e−2πts)δ(−2πt)R(π)−1

= R(π)τ(e−2πts)R(π)R(π)−1δ(−2πt)R(π)−1

= τS1
−

(e−2πts)δ(2πt).

Because Mob is generated by the elements τI(s) and τI(s), we see that U(g)
commutes with Mob for all g ∈ Mob. We have that again by functoriality of
the modular operators U(g)zI(t)U(g)∗ = zgI(t). For this we would need to show
that

SU(g)A(I)U(g)∗,0 = U(g)SA(I),0U(g)∗,

because then

U(g)JIU(g)∗U(g)∆
1/2
I U(g)∗ = U(g)JI∆

1/2
I U(g)∗

= U(g)SA(I)U(g)∗

= SU(g)A(I)U(g)∗

= SA(gI)

= JgI∆
1/2
gI ,

and then we use the uniqueness of polar decomposition. So we see U(g) as
inducing a morphism from the triple (H,Ω,A(I)) to (H,Ω,A(gI)). So from
U(g)zI(t)U(g)∗ = zgI(t) we see that zI(t) = zgI(t) for all g ∈ Mob. Since Mob
acts transitively on the set of all intervals I, we see that zI(t) is independent
of I. In particular zI(t) = zI′(t), and this second operator is equal to zI(−t) by
Haag duality, the fact that ∆−1 is the modular operator of A(I)′ and the fact
that δI′(t) = δI(−t). So zI(2t) = id for all t ∈ R.
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Let r : S1 → S1 be the reflection z 7→ z in the real line. For a general interval
I ∈ I, let g ∈ Mob be such that I = gS1

+. Then define

rI := grg−1.

This is well-defined since r commutes with dilations. Note that r2 = idS1 . This
is an orientation reversing isometry of S1 and is called the reflection associated
with I. We will add r to Mob as follows. Define a function

Ad(r) : Mob→ Mob, g 7→ rgr−1.

Then Ad(r) ∈ Aut(Mob) and Ad(r)2 = idMob. Now define a group homomorph-
ism ϕ : {1, r} → Aut(Mob) by r 7→ Ad(r).

Definition 4.4. We define Mob± := Moboϕ{1, r}.

So as a set, Mob± = Mob×{1, r}, and the multiplication is

(g, 1)(g′, 1) = (gg′, 1)

(g, 1)(g′, r) = (gg′, r)

(g, r)(g′, 1) = (grg′r−1, r)

(g, r)(g′, r) = (grg′r−1, 1).

A representation U of Mob on a Hilbert space H is called anti-unitary if U(g)
is unitary, respectively anti-unitary, if g is orientation preserving, respectively
reversing.

Theorem 4.5. Every unitary, positive energy representation U of Mob on a
Hilbert space H extends to an anti-unitary representation Ũ of Mob± on the
same Hilbert space H, up to unitary equivalence.
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