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Warm-up: vector spaces and tensor products

We start by introducing diagrammatic notation that will be used in this exercise, where we denote maps
by little strings. Let V be a vector space over C. Rather than depicting V itself we draw the identity
map 1 : V −→ V , which simply looks like in Figure 1 on page 4 below.

Since we are in the realm of linear algebra, all our objects (vector spaces, associative algebras, and
so on) come equipped with a linear structure. Accordingly, all maps that we write down should be
compatible with that structure: they should be (multi)linear. Recall the axioms for the tensor product
U ⊗ V of two vector spaces over C: for all u, u′ ∈ U , all v, v′ ∈ V and all λ ∈ C we have

(u+ u′)⊗ v = u⊗ v + u′ ⊗ v , u⊗ (v + v′) = u⊗ v + u⊗ v′ , (λu)⊗ v = u⊗ (λv) = λ(u⊗ v) .

i) Use these axioms to check that any map U ⊗ V −→W is bilinear, and reversely, that any bilinear
map U × V −→W yields a map U ⊗ V −→W .

Thus, we shall need a graphical notation shown in Figure 2 for the tensor product of two vector spaces,
or rather, of the identity map 1U⊗V = 1U ⊗1V on the tensor product. Of course there is also a ‘braiding’
or permutation operator interchanging the two elements, which we depict as in Figure 3. Sometimes we
also want to depict the (identity map on the) boring vector space C itself. That’s easy: we do not draw
anything, which is compatible with the fact that C⊗ V ∼= V ∼= V ⊗C are essentially the same.

Algebras and Lie algebras

Let’s go forth and multiply. To define an (associative) algebra we start with a vector space A with a map
m : A⊗ A −→ A (note that in this way we’ve already said that m is bilinear). We draw m as shown in
Figure 4. Actually, since the shape of the diagram in the middle is very distinctive, it won’t cause any
confusion to simply depict m as in Figure 5. Similarly we can depict the unit map η : C −→ A (sending
scalars to the corresponding multiples of the unit element 1A ∈ A) in terms of a string diagram: see
Figure 6 and its shorthand in Figure 7.

ii) Translate the commutative diagrams in Fig. 1.1 of [Maj] expressing the axioms for associative
algebras into string diagrams.

iii) Since any algebra is also a vector space, we know that the tensor product A⊗B of two algebras is
also a vector space. To turn it into an algebra we have to define a multiplication and unit map for
A⊗B. Translate the usual definitions ηA⊗B := ηA ⊗ ηB and (a⊗ b) · (a′ ⊗ b′) := (aa′)⊗ (bb′) into
string diagrams, and check that this turns A⊗B into an associative algebra.

iv) A commutative algebra satisfies ab = ba for all a, b ∈ A. Use the maps that we have introduced
so far to write down a commutative diagrams expressing this axiom, and give the corresponding
string diagram.

v) For comparison consider a Lie algebra g. As the bracket [·, ·] also is a map g ⊗ g −→ g, we can
depict it with the same string diagram as for m. (Lie algebras do not come with a multiplication,
so there should be no confusion in this case.) Draw string diagrams expressing the axioms for Lie
algebras.

1



Coalgebras and bialgebras

Reversing the direction of the arrows in the commutative diagrams stating the axioms for an associative
algebra, we obtain the axioms for a coalgebra C. These involve a comultiplication ∆: C −→ C ⊗C and
a counit ε : C −→ C, which we can draw as shown in Figure 8.

vi) Convert the commutative diagrams in Fig. 1.2 of [Maj] into string diagrams. What does it mean
for ∆ to be cocommutative?

vii) The three upper commutative diagrams in Fig. 1.3 of [Maj] do not involve the antipode, and are
really part of the definition of a bialgebra. Draw those axioms in terms of string diagrams.

Our favourite example of a bialgebra is of course the Yang-Baxter algebra from Section 2.1.3 of [GRS].
Recall that by definition, a Yang-Baxter algebra A consists of

• A family of invertible matrices R(u) ∈ Aut(Cn ⊗Cn) parametrized by a spectral parameter u ∈ C
(here Cn is the auxiliary space).

• An associative algebra T with a unit element 1 and a family of n2 generators {T j
i (u)}1≤i,j≤n

parametrized by u ∈ C, subject to the following relation: two generators with different spectral
parameter can be commuted according to the Yang-Baxter equation (2.24):

n∑
j1=1

n∑
j2=1

Rk1k2
j1j2

(u− v)T j1
i1

(u)T j2
i2

(v) =

n∑
j1=1

n∑
j2=1

T k2
j2

(v)T k1
j1

(u)Rj1j2
i1i2

(u− v) .

By definition, then, the Yang-Baxter is an associative algebra. We have also seen that it has a comulti-
plication ∆: A −→ A ⊗A which is determined by T j

i (u) 7−→
∑n

k=1 T
k
i (u)⊗ T j

k (u).

viii) Show that this comultiplication is coassociative, and give the formula for the counit. Check that
this turns the Yang-Baxter algebra into a bialgebra by verifying the axioms from part (vii).

In the seminar we have already encountered other examples of bialgebras, but those actually have more
structure, which we turn to next.

Hopf algebras

To state the axioms for a Hopf algebra H we further need the antipode S : H −→ H, which we draw as
in Figure 9.

ix) Translate the remaining commutative diagram in Fig. 1.3 of [Maj] into string diagrams.

This final axiom has some nice direct consequences, given in Proposition 1.4 of [Maj].

x) Convert that proposition and its proof into string diagrams.

We conclude this exercise with two examples that we have encountered in this week’s presentation.
For the first class of examples, let g be any Lie algebra, and consider its universal enveloping algebra
U(g), which can be obtained from the tensor algebra

T (g) = C ⊕ g ⊕ g⊗2 ⊕ g⊗3 ⊕ · · ·

by forcing the bracket of g inside U(g) to coincide with the commutator bracket. Again, by construction
this is an associative algebra.

For X ∈ g we set

∆(X) := X ⊗ 1+1⊗X , ε(X) := 0 , S(X) := −X . (1)

xi) Check that these definitions turn the associative algebra U(g) into a cocommutative Hopf algebra.

As we have seen today, if {Xi}1≤i≤n is a basis for g, then a convenient basis for U(g) is given by
{Xr1

1 X
r2
2 · · ·Xrn

n }r1,··· ,rn∈N. This basis is known as the Poincaré-Birkhoff-Witt, or PBW, basis. The
point is not that it consists of products of the Xi, but that we can use the bracket in U(g) to express
any of its element as a linear combination of this ‘lexicographically ordered’ basis. For example (letting
cijk denote the structure constants of g):

X2X1 = X1X2 − [X1, X2] = X1X2 −
∑
n

c12nXn .
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xii) Extend (1) to the PBW basis: compute the result of applying these maps to Xr1
1 X

r2
2 · · ·Xrn

n . Is
the counit map identically equal to zero?

Finally take g = sl2 and consider the quantum enveloping algebra Uq(sl2). As before this is an
associative algebra by construction, now subject to the relations

KK−1 = K−1K = 1 , KEK−1 = q2E , KFK−1 = q−2F , [E,F ] =
K −K−1

q − q−1
.

Further set

∆(E) := E ⊗K + 1⊗E , ∆(F ) := F ⊗ 1+K−1 ⊗ F , ∆(K±1) := K±1 ⊗K±1 ,
ε(E) := ε(F ) := 0 , ε(K±1) := 1 ,

S(E) := −EK−1 , S(F ) := −KF , S(K±1) := K∓1 .

xii) These definitions turn Uq(sl2) into a Hopf algebra. Prove that they satisfy the coassociativity
axiom and the Hopf algebra axiom, and that Uq(sl2) is not cocommutative.
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