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These are notes to a talk given in the quantum groups seminar during the fall of 2012 at Utrecht
University, which followed the book Quantum Groups by Kassel.

1 Introduction

In this talk we start building the theory of quantum groups in earnest. As was mentioned in the
previous talk, they are special types of Hopf algebras that arise as deformations of Lie groups
or Lie algebras. To describe how this process works, we will need to first develop some theory
on algebras and their modules. In particular, we will discuss the so-called Ore extension of an
algebra. Later we will see that enveloping algebras of solvable Lie algebras are Ore extensions,
as are the coordinate rings of quantum groups. Ore extensions will be also be used when we see
that certain objects of interest can be realized as iterated Ore extensions, which in turn is used
to show these objects have certain properties preserved by Ore extension (see e.g. [Kassel, VI.1.4]
on Uq(sl(2))).

Throughout this talk I will assume familiarity with the following concepts: (free) algebras, mod-
ules, matrix algebras, graded algebras and Noetherian rings. These can all be found in [Kassel,
I.1-I.6 and I.8].

2 Ore extensions

Let R be an algebra over a field k and let R[t] be the free left R-module of all polynomials P ∈ R[t]
of the form

P = ant
n + · · ·+ a0t

0,

where the coefficients ai lie in R. When an 6= 0 we define the degree deg(P ) of P as being equal to
n; we set deg(0) = −∞. We wish to turn R[t] into an algebra, such that its structure is compatible
with that on R and the degree. In fact, we wish to find all such structures. It is clear that we
must specify or describe what the product ta is for arbitrary elements a ∈ R.

Let α be an algebra endomorphism of R.

Definition. An α-derivation of R is a linear endomorphism δ of R such that for all a, b ∈ R

δ(ab) = α(a)δ(b) + δ(a)b.

Note that we have δ(1) = 0, as

δ(1) = δ(1 · 1) = α(1)δ(1) + δ(1)1 = α(1)δ(1) + δ(1),

but α(1) = 1 as α must preserve units. We will see that these two pieces of data (i.e., a pair (α, δ))
characterize all possible algebra structures on R[t]. We first show that given a compatible algebra
structure on R[t] we can extract a pair (α, δ) from it.

Theorem [Kassel, I.7.1.(a)]. Suppose R[t] is given an algebra structure such that:

• the natural inclusion R ↪→ R[t] is an algebra morphism;

• deg(PQ) = deg(P ) + deg(Q) for all P,Q ∈ R[t].
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Then R has no zero divisors, and there exists a unique injective algebra endomorphism α : R→ R
and a unique α-derivation δ of R such that ta = α(a)t+ δ(a) for all a ∈ R.

Proof We first show R has no zero divisors. Let a, b ∈ R be nonzero elements. Then
through the natural inclusion they are of degree 0 in R[t]. Through compatibility we have
deg(ab) = deg(a) + deg(b) = 0, so that we must have ab 6= 0 in R[t], and hence in R.

We now show existence and uniqueness of α and δ. Let a ∈ R be any nonzero element and consider
it in R[t]. Then we have deg(ta) = deg(t) + deg(a) = 1, so that by definition of R[t] there are
unique elements b, c ∈ R such that

ta = bt+ c.

In fact, we know that b must be nonzero. Now define α and δ uniquely through α(a) := b and
δ(a) := c. As left multiplication by t is linear, i.e. t(λa+a′) = λta+ ta′ for all λ ∈ k and a, a′ ∈ R,
we see that so are α and δ:

α(a+ a′)t+ δ(a+ a′) = t(a+ a′) = ta+ ta′ = α(a)t+ δ(a) + α(a′) + δ(a′);

α(λa)t+ δ(λa) = t(λa) = λta = λ(α(a)t+ δ(a)).

Furthermore, as we saw that α(a) is nonzero for nonzero a, we see that α is injective. Now take
two elements a, b ∈ R and consider the relation (ta)b = t(ab) in associative algebra R[t]. We get

α(a)(α(b)t+ δ(b)) + δ(a)b = (α(a)t+ δ(a))b = (ta)b = t(ab) = α(ab)t+ δ(ab).

Looking at this per degree we see that

α(ab) = α(a)α(b);

δ(ab) = α(a)δ(b) + δ(a)b.

Furthermore, using that t1 = t we see from ta = α(a)t + δ(a) that α(1) = 1 and δ(1) = 0. We
conclude that α is an injective algebra endomorphism and that δ is an α-derivation. �

This theorem in fact has a converse, in that a pair (α, δ) is enough to uniquely specify a compatible
algebra structure on R[t].

Theorem [Kassel, I.7.1.(b)]. Let R be an algebra without zero divisors. Given an injective
algebra endomorphism α of R and an α-derivation δ of R there exists a unique algebra structure
on R[t] such that:

• the natural inclusion R ↪→ R[t] is an algebra morphism;

• ta = α(a)t+ δ(a) for all a ∈ R.

When R[t] is given this algebra structure it is called the Ore extension R[t, α, δ] attached to the
data (R,α, δ). There are several special cases covered by this object:

• If α = idR and δ = 0, then R[t, idR, 0] = R[t], where now t commutes with all elements of R;

• Somewhat more generally, if α = idR, then R[t, idR, δ] is an algebra of polynomial differential
operators, satisfying the Leibniz formula.

Exercise [Kassel, I.9.8]. Let δ be an α-derivation of an algebra R. Prove that if a1, . . . , an are
elements of R, then

δ(a1 · . . . · an) = δ(a1)a2 · . . . · an +

n−1∑
i=2

α(a1 · . . . · ai−1)δ(ai)ai+1 · . . . · an + α(a1 · . . . · an−1)δ(an),

and for n ≥ 1

δn(a1a2) =

n∑
k=0

Sn,k(a1)δn−k(a2),
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where the Sn,k is the linear endomorphism of R defined as the sum of all
(
n
k

)
compositions of k

copies of δ and n− k copies of α.

Proof As was noted before, it clearly suffices to prescribe the product ta for all a ∈ R to
determine the product on R[t], by associativity. As such, the relation ta = α(a)t + δ(a) specifies
the algebra structure on R[t] uniquely.

We now show this structure actually exists. Let M denote the associative algebra of all infinite
matrices (fij)i,j≥1 with entries in the algebra End(R) such that each row and column has only
finitely many nonzero entries. Let the unit of M be denoted by I, and given an element a ∈ R,
let â ∈ End(R) denote left multiplication by a. We then have

αâ = α̂(a)α;

δâ = α̂(a)δ + δ̂(a).

Now let T ∈M be the infinite matrix defined by

T :=



δ 0 0 0 · · ·
α δ 0 0 · · ·
0 α δ 0 · · ·
0 0 α δ · · ·

0 0 0 α
. . .

...
...

...
...

. . .


.

Then define the linear map Φ : R[t]→M by

Φ

(
n∑

i=0

ait
i

)
=

n∑
i=0

(âiI)T i.

We assert that Φ is injective. If ei is the column vector which is zero everywhere except at the ith
entry, where it is equal to the unit 1 of R, we see that T (ei) = ei+1 for all i ≥ 1. Now let P ∈ R[t]
be given such that Φ(P ) = 0. Then we have

0 = Φ(P )(e1) =

n∑
i=1

(âiI)T i(e1) =

n∑
i=0

âiei+1.

From this we clearly see that âi = 0 for all i, and applying each to 1 ∈ R we get ai = 0 for all i.
Hence P = 0 and Φ is injective. Now note that the following relation holds:

T (âI) =
(
α̂(a)I

)
T +

(
δ̂(a)I

)
.

Let S be the subalgebra of M generated by T and elements âI for all a ∈ R. Then by this relation
we see that S is the image of R[t] under Φ. As this map is injective, it in fact induces a linear
isomorphism from R[t] to the algebra S. With this we an lift the algebra structure from S to R[t],
showing existence of the desired algebra structure on R[t]. �

Note that the Ore extension R[t, α, δ] has no zero divisors by the existence of the degree. It is free
as a left R-module, with basis

{
ti
}
i≥0. If α is assumed to be an automorphism (i.e. it is invertible)

we also have the following:

Corollary. If α is an automorphism, R[t, α, δ] is a free right R-module with basis
{
ti
}
i≥0.

Proof We prove
{
ti
}
i≥0 generates R[t, α, δ] as right R-module. We wish to show each element

P of R[t, α, δ] can be written as P =
∑n

i=0 t
iai for some n and a0, . . . , an ∈ R. We prove this

through induction on the degree n of P . When n = 0 it is clear, whereas for higher n we have

atn = tnα−n(a) + lower degree terms.
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Now suppose
{
ti
}
i≥0 is not free. Then there exists a relation

tnan + tn−1an−1 + · · ·+ ta1 + a0 = 0,

where an 6= 0. By the above relation we can rewrite this as a relation

αn(an)tn + lower degree terms = 0,

so that αn(an) = 0. As α is an isomorphism we get an = 0, which is a contradiction. �

3 Noetherian rings

Recall that a ring A is called left Noetherian if any left ideal I of A is finitely generated, or
equivalently if any ascending sequence of left ideals of A is finite. We know that being left
Noetherian is preserved by surjective ring morphisms, but also by Ore extension.

Theorem [Kassel, I.8.3]. Let R be an algebra without zero divisors, α an R-algebra automor-
phism and δ an α-derivation of R. If R is left Noetherian, then so is R[t, α, δ].

Proof Let I be a left ideal of R[t, α, δ]. We wish to prove I is finitely generated. Now, given
an integer d ≥ 0 define

Id = {0} ∪ {a ∈ R | a is the leading coeffiient of a degree d element of I.} .

We assert Id is a left ideal of R. Clearly it is closed under addition. Now assume 0 6= a ∈ Id so
that atd + · · · ∈ I. Given any nonzero b ∈ R we then have batd + · · · ∈ I as I is an ideal. Because
R has no zero divisors we have ba 6= 0 so that ba ∈ Id. Hence Id is a left ideal.

Now note that if a ∈ Id is the leading coefficient of some polynomial P , then tP = α(a)td+1 + . . . ,
so that α(a) is the leading coefficient of tP . This clearly implies α(Id) ⊂ Id+1. With this we can
form the following ascending sequence of left ideal in R:

I0 ⊂ α−1(I1) ⊂ α−2(I2) ⊂ . . . ⊂ α−n(In) ⊂ . . . .

As R is left Noetherian, there exists an integer n such that α−n(In) = α−(n+i)(In+i), or In+i =
αi(In) for all i ≥ 0. As R is left Noetherian any left ideal is finitely generated, so for d with
0 ≤ d ≤ n, choose generators ad,1, . . . , ad,p of Id. For 1 ≤ i ≤ p, let Pd,i be any degree d polyno-
mial whose leading coefficient is ad,i. Then the collection {Pd,i} is finite.

Let I ′ be the left ideal of R[t, α, δ] generated by this family. Obviously we have I ′ ⊂ I. We
claim the converse inclusion also holds by induction on degrees. Let P ∈ I be any element. If
deg(P ) = 0, then clearly we have P ∈ I ′. So now suppose that Q ∈ I ′ for all Q ∈ I with
deg(Q) < d and let P ∈ I be of degree d. There now are two cases:

(1) If d ≤ n, then the leading coefficient a of P is of the form a =
p∑

i=0

riad,i for some ri ∈ R.

Hence Q := P −
p∑

i=0

riPd,i is an element of I with degree less than d. By induction we have

Q ∈ I and hence P ∈ I.

(2) If d > n, then the leading coefficient a of P belongs to Id = αd−n(In). As such it can be

written as a =
p∑

i=0

riα
d−n(ad,i) for some ri ∈ R. Now consider Q := P −

p∑
i=0

rit
d−nPd,i. The

coefficient of td in Q is equal to a−
p∑

i=0

riα
d−n(ad,i) = 0, so that deg(Q) < d. By induction

we have Q ∈ I and hence P ∈ I.
�
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