
Robert Rodger
Drinfeld-Jimbo Algebras

Introduction
Today’s talk is similar to the one I gave three weeks ago, in that we again will build a construction using
reasonable data that will provide for us a solution to the Yang-Baxter Equation. As you will recall, last
time we were able to build a solution using any finite-dimensional Hopf algebra with an invertible antipode.
This time, all we will need is a complex semisimple Lie algebra. However, in order to do so, we will have
to forgo the implicit restriction we have imposed upon ourselves up until now; namely, that elements in the
algebra underlying our module must be polynomials in the generators. We will, instead, allow elements in
our algebra to be formal series. Doing so will require us to essentially start from scratch and rebuild our
concept of what an algebra, and ultimately a braided bialgebra, is. In so doing, we will introduce the idea of
a topology on our algebra and our tensor product, which will happen to also be a metric topology and thus
can give us some amount of reassurance that we will retain some notion of convergence. (However, we will
not explicitly need this metric in what follows, and I leave you to investigate it in the exercise.)

The Ring of Formal Series and h-Adic Topology
We consider the complex algebra K = C[[h]] of complex formal series in the variable h. Any element f ∈ K
is of the form f =

∑
n≥0 anh

n, where (a0, a1, ...) is a family of complex numbers indexed by the naturals.
Summation is component-wise and multiplication is given by

ff ′ =
∑
n≥0

( ∑
p+q=n

apa
′
q

)
hn

Any polynomial in h can be considered as an element in K; in particular, the constant polynomial 1 is the
multiplicative unit. Immediately, we see

LEM: A formal series f is invertible in C[[h]] iff a0 6= 0 in C.

Now, for any integer n > 0, consider the algebra Kn = C[h]/(hn) of truncated polynomials. There is a
surjective morphism of algebras πK

n : K � Kn sending

f =
∑
n≥0

anh
n 7→ (the class of)

n−1∑
k=0

akh
kmod(hn)

whose kernel is hnK. By the first isomorphism theorem (of rings), we have

C[[h]]/(hn) ∼= C[h]/(hn)

For n > 0, we also have a surjective morphism of algebras pn : Kn → Kn−1 induced by the inclusion of ideals
(hn) ⊂ (hn−1).

DEF: An inverse system of abelian groups (An, pn) is a family (An)n∈N of abelian groups and of
morphisms of groups (pn : An → An−1)n>0.

Note: we write ”abelian groups” above, but everything here also applies to commutative rings or modules.
In particular, we’re going to apply it in a bit to our algebras Kn.

DEF: Given (An, pn) as above, its inverse limit lim←−n
An is

lim←−
n

An =

(xn)n≥0 ∈
∏
n≥0

An

∣∣ pn(xn) = xn−1 ∀n > 0


The inverse limit has an abelian group structure as a subset of the direct product

∏
n≥0An, whose group

structure is defined component-wise. Additionally, the natural projection π :
∏

n≥0An → Ak restricts to a

morphism of groups πlim
k : lim←−n

An → Ak; it is defined by πlim
k ((xn)n) = xk. If all maps pn are surjective,
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then so are the maps πlim
n . Note that pn ◦ πlim

n = πlim
n−1.

DEF: The inverse limit topology is defined as follows. Put the discrete topology on each An (i.e. the
topology for which every subset is an open). The inverse limit topology on lim←−n

An is then the restriction of

the direct product topology on
∏

n≥0An (i.e. a basis of open sets of the inverse limit is given by the family

of all subsets (πlim)−1n (Un), where Un is any open subset of An).

A map f from a topological set to lim←−n
An is continuous w.r.t. the inverse limit topology iff the map πlim

n ◦ f
into An is continuous ∀n > 0. In particular, the πlim

n are continuous.

The inverse limit has the following universal property:

PROP: Given (An, pn) as above, for any abelian group C and any given family (fn : C → An)n≥0 of
morphisms of groups s.t. pn ◦ fn = fn−1 for all n > 0, there exists a unique morphism of groups

f : C → lim←−
n

An

s.t. πlim
n ◦ f = fn for all n ≥ 0.

Let us now return to our algebrasKn. We form the inverse system of algebras (Kn, pn)n and the corresponding
inverse limit lim←−n

Kn. Hence, objects in lim←−n
Kn look like

(0, c0, c0 + c1h, c0 + c1h+ c2h
2, ...)

Since pn ◦ πK
n = πK

n−1, from the above proposition, there exists a unique morphism of algebras π from K to
lim←−n

Kn s.t. πlim
n ◦ π = πK

n .

PROP: The map π : K → lim←−n
Kn is an isomorphism. (To use language similar to what was earlier

presented, C[[h]] ∼= lim←−n
C[h]/(hn).)

Proof: π is injective because its kernel, the intersection of all (hn), is zero. We demonstrate surjectivity by
constructing a right inverse. Let (fn)n>0 ∈ lim←−n

Kn; thus fn ∈ Kn can be represented as

fn =

n−1∑
k=0

a
(n)
k hk

and we have pn(fn) = fn−1 for all n > 0. Hence a
(n)
k = a

(n−1)
k for 0 ≤ k ≤ n− 2. We can therefore define a

formal series f =
∑

n≥0 anh
n by an = a

(n+2)
n = a

(n+3)
n = .... We have π(f) = (fn)n. �

The above proposition allows us to equip K with the inverse limit topology, except now we refer to it as the
h-adic topology. For Un ⊂ Kn open, we have that (πK

n )−1(Un) is open; in particular, (πK
n )−1(0) = (hn) is

open, and I think this is the reason for the re-naming of the topology.

Topologically Free Modules
Let M be a left module over K (so that, for m ∈M , things like hm, h2m, etc. are also in M). Consider the
family of submodules (hnM)n>0 and the canonical K-linear projections

pn : Mn = M/hnM →Mn−1 = M/hn−1M

They form an inverse system of K-modules, and we may consider the inverse limit

M̃ = lim←−
n

Mn

This has a natural structure as a K-module (namely, if f ∈ K and m̃ = (m0,m1, ...) ∈ M̃ , then
fm̃ = (fm0, fm1, ...)) and has a natural topology, the inverse limit topology, for which the family of sub-

modules (hnM̃)n is a family of open neighborhoods.
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DEF: M̃ is called the h-adic completion of M.

The projections in : M →Mn induce a unique K-linear map i : M → M̃ s.t. πlim
n ◦ i = in for all n. That is,

for m ∈M , i(m) = (0, i1(m), i2(m), ...). The kernel of i is given by

Ker(i) =
⋂
n>0

hnM

DEF: A K-module M is separated if Ker(i) = {0}. It is complete if i is surjective. (In particular, if M

is isomorphic to its completion M̃ , it is complete.)

For any moduleM , the moduleM/(
⋂

n>0 h
nM) is, by definition, separated and the completion M̃ is complete.

Why? Consider the projection πlim
n : M̃ →Mn: its kernel is hnM̃ , and therefore

M̃/hnM̃ ∼= Mn = M/hnM

and if we take the inverse limit of both sides, we have
˜̃
M ∼= M̃ .

Any separated, complete K-module will be equipped with the h-adic topology coming from the inverse limit
topology on M̃ .

DEF: Given any complex vector space V , the topologically free module V [[h]] is the set of all formal
series

∑
n≥0 vnh

n, where (v0, v1, ...) is an infinite family of elements of V , with the left K-module structure.
For instance, if f ∈ K and v ∈ V [[h]]:

fv =

∑
n≥0

anh
n

∑
m≥0

vmh
m

 =
∑
n≥0

( ∑
p+q=n

apvq

)
hn

Setting V = C allows us to recover K.

PROP: Any topologically free module is separated and complete.
Proof: The submodule hnV [[h]] is the set of all elements

∑
n≥0 vnh

h s.t. v0 = ... = vn−1 = 0. It follows that⋂
n≥0 h

nV [[h]] = 0, so V [[h]] is separated. The proof of completeness follows the one showing K ∼= lim←−n
Kn;

hence V [[h]] ∼= lim←−n
(V [[h]]/hnV [[h]])n>0, which is complete.

Hence, any topologically free module can be endowed with the h-adic topology. Additionally, we can
strengthen the above proposition: A left K-module is topologically free iff it is separated, complete, and
torsion-free. (Recall: a K-module is torsion-free if hm 6= 0 when M 3 m 6= 0.)

PROP: For any separated, complete K-module N , there is a natural bijection

HomK(V [[h]], N) ∼= Hom(V,N)

where HomK denotes the space of K-linear maps.
Proof: The proof relies on the idea of an inverse limit of a family of K-linear maps, which I don’t have time
to introduce. But the result is necessary for the description of Quantum Enveloping Algebras, a general class
of objects of which our Drinfeld-Jimbo algebras are particular example.

Topological Tensor Product
Let M and N be left-modules over the algebra K = C[[h]]. Consider the K-module M ⊗K N obtained as the
quotient of the vector space M ⊗N by the subspace spanned by all elements of the form fm⊗ n−m⊗ fn,
where f ∈ K, m ∈M , n ∈ N .

DEF: The topological tensor product M⊗̃N of M and N is the h-adic completion of M ⊗K N :

M⊗̃N = ˜(M ⊗K N) = lim←−
n

(M ⊗K N)/hn(M ⊗K N)
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Since it is defined as a completion, the topological tensor product of two modules is always complete. The
usual associativity and commutativity constraints induce the following K-linear isomorphisms:

(M⊗̃N)⊗̃P ∼= M⊗̃(N⊗̃P )

M⊗̃N ∼= N⊗̃M

Also,
K⊗̃M ∼= M̃ ∼= M⊗̃K

i.e. K serves as a unit for completions.

PROP: If M and N are topologically free modules, then so is M⊗̃N . More precisely,

V [[h]]⊗̃W [[h]] = (V ⊗W )[[h]]

Topological Algebras
The intuitive way to work with topological algebras is basically to take what you know about non-topological
algebras and put tildes over all your tensor products and replace your ground field k with our algebra K.

DEF: A topological algebra is a triple (A,µ, η), where A is a module over the ring K = C[[h]],
µ : A⊗̃A→ A, and η : K → A are K-linear maps s.t.

µ ◦ (µ⊗̃idA) = µ ◦ (idA⊗̃µ)

µ ◦ (η⊗̃idA) = idA = µ ◦ (idA⊗̃η)

Not surprisingly, if we identify K⊗̃K with K, then (K, idK , idK) is a topological algebra (i.e. K is akin to
k in the non-topological case). Additionally, we can define the topological tensor product of two topological
algebras simply by adding a tilde to all of the ⊗’s in our definitions.

Let (A,µ, η) be a topological algebra and f(h) =
∑

n≥0 cnh
n a formal series with complex coefficients. For

any a ∈ A the formula

f(ha) =
∑
n≥0

cna
nhn

defines a unique element in the inverse limit Ã = lim←−n
A/hnA (namely, (0, c0, c0+c1ah, c0+c1ah+c2a

2h2, ...)),

and if A is separated and complete, it defines an element, still denoted by f(ha), in A ∼= Ã. We can use this
to define

eha =
∑
n≥0

anhn

n!

so long as A is separated and complete. Further, if a′ ∈ A commutes with a,

ehaeha
′

= eh(a+a′)

implies that eha is invertible. We will need this formalism later to define the R-matrices of our DJA’s.

We didn’t discuss quasi-bialgebras in the non-topological case, but we’ll need their topological counterpart
in order to define DJA’s, so...

DEF: A topological quasi-bialgebra is a sextuple (A,µ, η,∆, ε,Φ), where (A,µ, η) is a topological algebra,
∆ : A→ A⊗̃A and ε : A→ K are K-linear maps, and Φ is an invertible element in A⊗̃A⊗̃A s.t.

(idA⊗̃∆)(∆(a)) = Φ
((

∆⊗̃idA

)
(∆ (a))

)
Φ−1

for all a ∈ A,
(ε⊗̃idA)∆ = idA = (idA⊗̃ε)∆

(idA⊗̃idA⊗̃∆)(Φ)(∆⊗̃idA⊗̃idA)(Φ) = Φ234(idA⊗̃∆⊗̃idA)(Φ)Φ123

(idA⊗̃ε⊗̃idA)(Φ) = 1⊗ 1
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What you should take away from this is that there exists a generalization of topological (and non-topological)
bialgebras, which includes an extra piece of data, Φ, which can potentially obstruct coassociativity much in
the way that R can potentially obstruct cocommutativity.

DEF: When Φ = 1⊗̃1⊗̃1, we call A a topological bialgebra, in accordance with the non-topological case.
(In this case, we retain coassociativity.)

For the sake of completeness, I introduced (topological) quasi-bialgebras because the general theory allows for
non-coassociative bialgebras. However, the specific example in which we are interested, the Drinfeld-Jimbo
algebra, happens to be coassociative and so for the remainder of the talk, if it makes you more comfortable,
you can just mentally replace every instance of “quasi-bialgebra” with just “bialgebra” and forget about Φ;
all the remaining theory will remain true in this case.

DEF: A topological braided quasi-bialgebra (A,µ, η,∆, ε,Φ, R) is a topological quasi-bialgebra with an
invertible element R ∈ A⊗̃A, called the universal R-matrix of A, satisfying

∆op(a) = R∆(a)R−1

(idA⊗̃∆)(R) = (Φ231)−1R13Φ213R12(Φ123)−1

(∆⊗̃idA)(R) = Φ312R13(Φ132)−1R23Φ123

EX: Let A = (A,µ, η,∆, ε,Φ, R) be a topological braided quasi-bialgebra. Since
(A⊗̃A)/h(A⊗̃A) ∼= A/hA⊗A/hA, the K-linear maps µ, η,∆, ε induce C-linear maps (via restriction):

µ̄ : A/hA⊗A/hA→ A/hA, η̄ : C→ A/hA

∆̄ : A/hA→ A/hA⊗A/hA, ε̄ : A/hA→ C
Define Φ̄ as the class of Φ modulo (A/hA)⊗3 and R̄ as the class of R modulo (A/hA)⊗2. Then
Ā = (A/hA, µ̄, η̄, ∆̄, ε̄, Φ̄, R̄) is a (non-topological!) braided quasi-bialgebra.

DEF: A topological A-module M over a topological algebra A = (A,µ, η) is a left K-module with a
K-linear map µM : A⊗̃M →M s.t.

µM ◦ (µ⊗̃idM ) = µM ◦ (idA⊗̃µM ), µM ◦ (η⊗̃idM ) = idM

IfM andN are topologicalA-modules, then, in parallel with the non-topological case, we can put a topological
A-module structure on their topological tensor product M⊗̃N . Then, if A is a topological braided algebra
with universal R-matrix R, for any topological A-module M the K-linear automorphism cRM,M defined by

cRM,M (m1⊗̃m2) =
(
R
(
m1⊗̃m2

))
21

is a solution of the Yang-Baxter equation in M⊗̃M⊗̃M .

DEF: A quantum enveloping algebra for the complex Lie algebra g is a topological braided quasi-
bialgebra A = (A,µ, η,∆, ε,Φ, R) s.t.

(i)A is a topologically free module
(ii) The induced braided quasi-bialgebra Ā = (A/hA, µ̄, η̄, ∆̄, ε̄, Φ̄, R̄) coincides with the trivial braided
quasi-bialgebra structure of U(g)
(iii) The map η is trivially extended from η̄.

Let’s make the definition explicit. First, note that a QUE is topologically free. Thus A = (A/hA)[[h]] as a
left K-module. By hypothesis, we also have A/hA = U(g), and thus A = U(g)[[h]] as a K-module. We also
have

A⊗̃n = (U(g)
⊗n

)[[h]]

for all n > 0. Thus, using the proof of that earlier proposition I said we’d need when we got to QUE’s,
the maps µ, η,∆, ε are determined by their restrictions to U(g)⊗U(g), C, U(g), and U(g), respectively. For
instance, for a, a′ ∈ U(g),

µ(a⊗ a′) =
∑
n≥0

µn(a⊗ a′)hn
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where (µn)n≥0 is a family of linear maps from U(g)⊗ U(g) to U(g) s.t. µ0 is the product in the enveloping
algebra. Likewise for ∆ and ε; for η, we have η(f) = f1 for all f ∈ K. Lastly,

Φ =
∑
n≥0

Φnh
n, R =

∑
n≥0

Rnh
n

where (Φn)n≥0 and (Rn)n≥0 are families of elements of U(g)⊗3 and U(g)⊗2, respectively, s.t.

Φ0 = 1⊗ 1⊗ 1, R0 = 1⊗ 1

Note that these identities ensure the invertibility of Φ and R (recall the first lemma), a necessary condition
for quasi-, respectively braided, bialgebras.

We can recover g from A by
g = {x ∈ A/hA | ∆0(x) = 1⊗ x+ x⊗ 1}

recalling that the subspace of primitive elements in U(g) is g provided that the ground field is of characteristic
zero.

Semisimple Lie Algebras
We first review the data used by Élie Cartan to completely characterize the semisimple (and hence finite-
dimensional) compex Lie algebras. This will allow us to deform the semisimple Lie algebras in a natural way.
(Here, n = N/3, where N is the number of generators of the semisimple Lie algebra and is always a multiple
of three.)

DEF: A Cartan matrix is a square matrix A = (aij)1≤i,j≤n with the following properties:
(i) its coefficients aij are non-positive integers when i 6= j, and aii = 2
(ii) there exists a diagonal matrix D = Diag(d1, ..., dn) with entries in the set {1, 2, 3} s.t. the matrix DA
is symmetric positive-definite

Jean-Pierre Serre then showed that the enveloping algebra U(g) of g is isomorphic to the algebra generated
by {Xi, Yi, Hi}1≤i≤n and the relations

[Hi, Hj ] = 0, [Xi, Yj ] = δijHi, [Hi, Xj ] = aijXj , [Hi, Yj ] = −aijYj

and, if i 6= j,
1−aij∑
k=0

(−1)k
(

1− aij
k

)
Xk

i XjX
1−aij−k
i = 0

1−aij∑
k=0

(−1)k
(

1− aij
k

)
Y k
i YjY

1−aij−k
i = 0

EX: In the case of sl(2), A = (2), D = (1), and U(sl(2)) is isomorphic to the algebra generated by {X,Y,H}
subject to the relations [X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y .

This Doesn’t Fit Anywhere Else
DEF: The topologically free algebra generated by X is the algebra of formal series over the free
complex algebra generated by the set X :

K(X) = (C〈X〉)[[h]]

equipped with the h-adic topology.

DEF: Let X be a set and R be a subset of the topologically free algebra K(X) generated by X. A K-algebra
A is said to be the K -algebra topologically generated by the set X of generators and the set R of
relations if A is isomorphic to the quotient of K(X) by the closure (for the h-adic topology) of the two-sided
ideal generated by R.
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Drinfeld-Jimbo Algebras
Let g be a complex semisimple Lie algebra and A, D, and n as before. We create a 1-parameter deformation
Uh(g) of U(g):

DEF: The Drinfeld-Jimbo algebra Uh(g) is the K-algebra topologically generated by the set of generators
{Xi, Yi, Hi}1≤i≤n and the relations

[Hi, Hj ] = 0, [Xi, Yj ] = δij
sinh(hdiHi/2)

sinh(hdi/2)
, [Hi, Xj ] = aijXj , [Hi, Yj ] = −aijYj

and if i 6= j
1−aij∑
k=0

(−1)k
[

1− aij
k

]
qi

Xk
i XjX

1−aij−k
i = 0

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qi

Y k
i YjY

1−aij−k
i = 0

where qi = ehdi/2 and where sinh is the usual formal series

sinh(x) =
ex − e−x

2
=
∑
n≥0

x2n+1

(2n+ 1)!

Note that, while sinh(hdi/2) is not invertible (since the zeroth-order coefficient equals zero), it is the product
of h with a unique invertible element, so that sinh(hdiHi/2)/sinh(hdi/2) is a well-defined element of
K〈{Xi, Yi, Hi}1≤i≤n〉. Also, note that the above relations closely resemble the Serre relations for semisimple
Lie algebras. In particular,

sinh(hdiHi/2)

sinh(hdi/2)
≡ Hi mod h

That is to say, to zeroth-order in h, this relation reduces to Serre’s relation for U(g). The same goes for the
two summation identities. We’ll see in a minute that if we set h = 0 we’ll recover the enveloping algebra of
g in Serre’s presentation.

THM: The topological algebra Uh(g) is a quantum enveloping algebra

(Uh(g), µh, ηh,∆h, εh,Φh, Rh)

for the Lie algebra g, with Φh = 1⊗̃1⊗̃1 and comultiplication and counit determined by

∆h(Hi) = Hi ⊗ 1 + 1⊗Hi

∆h(Xi) = Xi ⊗ ehdiHi/4 + e−hdiHi/4 ⊗Xi

∆h(Yi) = Yi ⊗ ehdiHi/4 + e−hdiHi/4 ⊗ Yi
εh(Hi) = εh(Xi) = εh(Yi) = 0

In particular, Uh(g) is a topological braided quasi-bialgebra. (No proof provided.) �

A few comments:
(i) Setting h = 0 gives us back the enveloping algebra of g in Serre’s presentation, i.e.

Uh(g)/hUh(g) ∼= U(g)

(ii) The topological bialgebra Uh(g) has antipode Sh determined by

Sh(Hi) = −Hi, Sh(Xi) = −ehdi/2Xi, Sh(Yi) = −e−hdi/2Yi

(iii) Commultiplication is not cocommutative and the antipode is not involutive.
(iv) The above theorem tells us only that Rh ∈ Uh(g) exists. Further work can show that it has the form

Rh =
∑
`∈Nn

eh( t0
2 + 1

4 (H`⊗1−1⊗H`))P`
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where H` =
∑

1≤i≤n `iHi for ` = (`1, ..., `n), t0 the element

t0 =
∑

1≤i,j≤n

(DA)−1ij Hi ⊗Hj

in g⊗ g, and P` is a polynomial in the variables X1 ⊗ 1,...,Xn ⊗ 1 and in 1⊗ Y1,...,1⊗ Yn (homogeneous
of degree `i in Xi ⊗ 1 and 1⊗ Yi) that can be calculated via induction on `. Note the exponentiated
generators; it is essentially for just this reason alone that we introduced the notion of a topological algebra.
(v) We have P0 = 1⊗ 1 and Rh ≡ 1⊗ 1 mod h, and hence Rh is invertible, as desired.

The Case of sl(2)
Uh = Uh(sl(2)) is the K-algebra topologically generated by the three variable X,Y,H and the relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] =
sinh(hH/2

sinh(h/2)
=
ehH/2 − e−hH/2

eh/2 − e−h/2

The Uq discussed earlier in the semester is not a quantum group. But it can be embedded in Uh:

PROP: There exists a map of Hopf algebras i : Uq → Uh s.t.

i(E) = XehH/4, i(F ) = e−hH/4Y, i(K) = ehH/2, i(K−1) = e−hH/2, i(q) = eh/2

The above map is an injection, which allows us to identify Uq with the subalgebra of Uh generated by

E = XehH/4, F = e−hH/4Y, K = ehH/2, K−1 = e−hH/2, q = eh/2

THM: The element Rh ∈ Uh⊗̃Uh defined below is a univeral R-matrix for Uh(sl(2))

Rh = e
h(H⊗H)

4

∑
`≥0

(q − q−1)`

[`]q!
q`(`−1)/2(E` ⊗ F `)


=
∑
`≥0

(q − q−1)`

[`]q!
q−`(`−1)/2e

h
2 (H⊗H

2 + 1
2 (`H⊗1−1⊗`H))(X` ⊗ Y `)

RMK: Clearly, this is not a useful working definition of Rh. However, it is enough to demonstrate to us
that, because of the exponentiated generators, a universal R-matrix is impossible to define in the Uq (read:
non-topological) paradigm.

EXERCISE: Ch. XVI, number 7. A quick note: although it is not explicitly about DJA’s or QUE’s, this
exercise is assigned to help us get a better feel for the notion of -adic topology and the inverse limit. In
particular, note that, in contrast to the case of (Kn, pn), we do not have that Z ∼= Zp (which we can think of
as the completion of Z); in fact, the latter is much, much bigger than the former. You’ll need to read a bit
about ultrametric distance and the idea of density, but a review of the proof of Prop XVI.2.3a and of Coro
XVI.1.4 (which was skipped during the talk) should suffice.
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