
Course notes for Conformal field theory (math 290)

André Henriques, spring 2014

Prologue: Let me spend a few words about what this class is not about. We will not be
treating CFT in more than two dimensions. We will not be doing perturbation theory.
More generally, I will not be assuming any prior knowledge of quantum field theory.
Actually, those who happen to have some knowledge of quantum field theory should not
expect it to help them much for this course.

Full and chiral CFT

Conformal manifolds. Recall that a manifold is called a conformal manifold if it is
equipped with a conformal metric. Here, a conformal metric is an equivalence class
of metric tensors (either Euclidian or Minkowskian) under the equivalence relation that
declares g1 and g2 to be equivalent if g2 = f · g1 for some R>0-valued function f .

In the case of 2-dimensional manifolds, a conformal metric can be re-expressed in
terms of other, more familiar structures:

Euclidian signature: On a smooth surface, one has:

conformal metric + orientation = complex structure.

Indeed, given a conformal metric and a tangent vector v ∈ TxM , one can define iv ∈ TxM
to the be unique vector that is orthogonal to v, of the same length as v, and such that
{v, iv} forms an oriented basis of TxM . Conversely, given a complex structure on a
tangent space TxM , then for every non-zero vector v there is a unique metric g such that
{v, iv} forms an oriented orthonormal basis. Changing the choice of vector v replaces the
metric by a positive scalar multiple of it.

Minkowskian signature: In that case, we have

conformal metric =
two transverse

foliations
+

information of what is
space and what is time,

from which it follows that:

conformal metric
+ orientation

=
two transverse

foliations
+

information of what is
space and what is time + orientation.
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Let us define a tangent vector v to be a null-vector if g(v, v) = 0. The notion of null-
vector is invariant under the transformation g 7→ f · g, and is therefore an intrinsic notion
to the conformal manifold M . Given a conformal metric, the two foliations are the ones
defined by the null-vectors.

Conversely, given two transverse foliations, there exists a unique conformal metric
that corresponds to them, up to sign. To see that, note that any pair of transverse foliations
is locally diffeomorphic to the standard pair of foliations on R2 by lines parallel to the x-
and y-axes. We may therefore restrict our attention to that special case. Let us write the
components of the metric tensor g in matrix form:

g =

(
g11 g12

g12 g22

)
.

Demanding that (1, 0) be a null-vector implies g11 = 0 and, similarly, demanding that
(0, 1) be a null-vector implies g22 = 0. It follows that

g =

(
0 g12

g12 0

)
= g12 ·

(
0 1
1 0

)
∼
(

0 1
1 0

)
.

if g12 > 0

If one furthermore demands that the vector (1, 1) is space-like (and therefore that the
vector (1,−1) is time-like), then this forces g12 to be positive, and we see that g ∼ ( 0 1

1 0 ).
Therefore, the two transverse foliations along with the information of what space is and
what time is completely determine the conformal metric.

There are, roughly speaking, two main approaches to conformal field theory: Euclid-
ian and Minkowskian.

The Euclidian approach to CFT : In the Euclidian approach, a unitary CFT is a gadget
that assigns to every connected compact oriented 1-manifold S a Hilbert space HS (there
is only one such manifold up to isomorphism). A diffeomorphism f : S1 → S2 induces
a map HS1 → HS2 that is unitary if f is orientation preserving and antiunitary if f is
orientation reversing.

To every cobordism

Σ :

︸︷︷︸
(∂Σ)in=S1∪...∪Sn

︸︷︷︸
(∂Σ)out=S′1∪...∪S′m

equipped with a complex structure
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there is a corresponding map gΣ : Hin → Hout,1 where

Hin := HS1 ⊗HS2 ⊗ . . .⊗HSn

and Hout := HS′1
⊗HS′2

⊗ . . .⊗HS′m .

Here, the orientations on S1, . . . , Sn are the ones induced by Σ, and the orientations on
S ′1, . . . , S

′
m are the opposite of the ones induced by Σ.

The axioms are as follows:
(0) The map gΣ depends smoothly on the choice of complex structure on Σ.
(0′) The image of a vector ξ ∈ HS1 under the map HS1 → HS2 depends continuously on
the choice of diffeomorphism S1 → S2. Similarly, if a sequence of cobordisms between
two fixed 1-manifolds converges to a diffeomorphism, then the same pointwise conver-
gence relation should hold.
(1) Given an orientation preserving diffeomorphism ϕ : (∂Σ)out

∼= (∂Σ′)in, then the map
gΣ∪ϕΣ′ associated to the composite cobordism Σ ∪ϕ Σ′ is equal to the composite

gΣ′ ◦ gΣ : Hin −→ Hout
∼= H ′in −→ H ′out.

Here, the middle isomorphism Hout
∼= H ′in is induced by ϕ.

(2) For any two cobordisms Σ1 and Σ2, we have

gΣ1tΣ2 = gΣ1 ⊗ gΣ2 .

(3) Relabeling an “in” boundary component as “out” corresponds to taking a partial
adjoint. We spell out this last condition in detail. Assume as before that (∂Σ)in =
S1 ∪ . . . ∪ Sn and (∂Σ)out = S ′1 ∪ . . . ∪ S ′m, and let us define Σ̃ to be the same man-
ifold as Σ, but with S1 relabeled as “out” and with its orientation reversed. Let us also
write S̄1 for S1 with the opposite orientation. Then for ξi ∈ HSi and ηi ∈ HS′i

we have〈
gΣ(ξ1 ⊗ . . .⊗ ξn), η1 ⊗ . . .⊗ ηm

〉
=
〈
gΣ̃(ξ2 ⊗ . . .⊗ ξn), ξ̄1 ⊗ η1 ⊗ . . .⊗ ηm

〉
.

Here, ξ̄1 ∈ HS̄1
is the image of ξ1 ∈ HS1 under the antiunitary HS1 → HS̄1

induced by
the orientation reversing diffeomorphism Id : S1 → S̄1.

The Minkowskian approach to CFT : In the Minkowskian approach, we focus on the
space-time manifold M := S1 × R, equipped with its standard Minkowskian “metric”
ds2 = dx2 − dy2 given by the tensor

g((x1, y1), (x2, y2)) = x1x2 − y1y2.

More precisely, we only care about the conformal equivalence class of the above metric
on M . The null-vectors form two foliations F1 and F2 on M , indicated in blue and red

1Really, the map gΣ also depends on a Riemannian metric on Σ. Scaling the metric by ef multiplies
the map gΣ by the constant ecS , where c ≥ 0 is an invariant of the CFT called the central charge, S :=∫

Σ
( 1

2‖df‖
2 + 2fK) is the so-called Liouville action, and K is the curvature of the metric.
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in the picture below, and the equivalence class of g is entirely determined, up to sign, by
those two foliations.

Definition: A double cone is an open simply connected subset O ⊂ M enclosed by
four leaves of the above foliations. We also demand that O not be too big: the images of
O in M/F1 and in M/F2 should not be dense. Here is an example of what a double cone
looks like:

M : time
O

Let us call a tangent vector v space-like if g(v, v) > 0, and time-like if g(v, v) < 0.

Definition: We call two double conesO1 andO2 causally separated if for any x ∈ O1

and y ∈ O2, every geodesic connecting x to y is space-like (you need to go faster than the
speed of light to go from O1 to O2).

Similarly, we call O1 and O2 causally well separated if for any x ∈ O1 and y ∈ O2

in their closures, every geodesic connecting x to y is space-like.

Example:

O1 O2

The double cones O1 and O2

are causally well separated

O1 O2

The double cones are causally
separated, but not well separated

Similarly, we can talk about any two subsets of M being causally separated, or causally
well separated.

Definition: If U is any subset of M , we define the causal complement of U to be the
set

U ′ :=
{
x ∈M

∣∣ {x} is causally well separated from U
}
.
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Note that if O is a double cone, then its causal complement O′ is also a double cone.
Similarly, if U = O1∪ . . .∪On is a union of n causally well separated double cones, then
U ′ is also a union of n causally well separated double cones.

Examples:

O O′

M

U

U ′
M

Roughly speaking, a CFT in the Minkowskian approach consists of a Hilbert space
H with a projective action of the group of conformal transformations of M , and a map

A : O 7→ A(O)

that sends a double cone O ⊂M to a subalgebra of B(H), the bounded operators on H .
However, before we can give the actual definition of CFT in the Minkowskian ap-

proach, we will need a couple of preliminaries on von Neumann algebras and on confor-
mal transformations.

Von Neumann algebras. Fix a Hilbert space H and recall that B(H) denotes the algebra
of bounded operators of H .

Definition: If A is any sub-∗-algebra of B(H), we define the commutant of A to be
∗-algebra

A′ :=
{
b ∈ B(H)

∣∣ ab = ba for every a ∈ A
}
.

The double commutant is then denoted A′′; it is the commutant of the commutant of A.

It is easy to see that one always has A ⊂ A′′. One can think of the double commutant
operation as some kind of closure operation, and indeed there exists a topology on B(H)
such that A′′ is exactly the closure of A in that topology.

Definition: A sub-∗-algebra A ⊂ B(H) is called a von Neumann algebra if A = A′′.

Conformal transformations. Let Conf(M) denote the group of orientation preserv-
ing conformal diffeomorphisms of M . This group has two connected components. The
identity component Conf↑(M) is called the group of orthochronous transformations, and
corresponds to those transformations that preserve the direction of time. The other com-
ponent Conf↓(M) consists of transformations that reverse the direction of time.

The leaf spaces of M with respect to the two foliations are both circles. We therefore
get two homomorphisms Conf↑(M) → Diff+(S1) to the group of orientation preserving
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diffeomorphisms of the circle. The kernel of the resulting homomorphism to Diff+(S1)×
Diff+(S1) is still surjective and so one gets a short exact sequence

0 −→ Z −→ Conf↑(M) −→ Diff+(S1)×Diff+(S1) −→ 0

where the kernel Z is generated by the “twisted translation” τ :

•

◦

τ
(1)

There is also a subgroup Möb(M) = Möb↑(M) ∪ Möb↓(M) of Conf(M), which
we’ll call the “Möbius transformations”. It is defined as the preimage of the group

PGL2(R)× PGL2(R) ⊂ Diff(S1)×Diff(S1)

under the projection Conf(M) → Diff(S1) × Diff(S1). Here, PGL2(R) ⊂ Diff+(S1) is
the group of fractional linear transformations of the real projective line (both the ori-
entation preserving and the orientation reversing ones), under the usual identification
S1 ∼= RP1.

The identity component of Möb(M) is denoted Möb↑(M). It is the preimage PSL2(R)×
PSL2(R) in Conf↑(M), and fits into a short exact sequence that is similar to that for
Conf↑(M):

0 −→ Z −→ Möb↑(M) −→ PSL2(R)× PSL2(R) −→ 0.

The definition of conformal field theory. Given all the above preliminaries, we can now
write down the definition of a unitary CFT in the Minkowskian approach.

Definition: A CFT consists of the following data:

• A Hilbert spce H called the state space of the CFT .

• A continuous2 projective action of Conf(M) on H that restricts to an honest action
on the subgroup Möb(M). The orthochronous transformations act unitarily and the
other ones act by antiunitaries.

2Here, continuity is with respect to the (quotient topology of the) strong operator topology, also known
as the topology of pointwise convergence. By definition, ui → u strongly if ui(ξ)→ u(ξ) for every ξ ∈ H .
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• A unit vector Ω ∈ H , called the vacuum vector.

• Finally and mot importantly, there is an assignment

A : O 7→ A(O)

that sends each double cone O ⊂ M to a subalgebra of B(H), the bounded opera-
tors on H . That algebra is called the algebra of local observables.

The above pieces of data are subject to the following axioms:

• If O1 ⊆ O2 then A(O1) ⊆ A(O2).

• Locality: If O1 and O2 are causally separated, then the algebras A(O1) and A(O2)
commute with each other.

• Covariance: For g ∈ Conf(M) with corresponding (anti)unitary ug (well defined
up to phase), we have

A(gO) = ugA(O)u∗g.

Moreover, if g ∈ Conf(M) fixes O pointwise, then Ad(ug) fixes A(O) pointwise,
in other words, ug commutes with A(O).

• Positive energy: Let αt be the unitary that corresponds to the transformation (x, y) 7→
(x + t, y + t) on M = R2/Z ⊕ {0} (translation by t in the direction of one of the
null-foliations). Similarly, let ᾱt be the unitary that corresponds to the transfor-
mation (x, y) 7→ (x − t, y + t) (translation by t in the direction of the other the
null-foliation). Then there exist unbounded positive operators L0 and L̄0 on H such
that

αt = eitL0 and ᾱt = eitL̄0 .

• The vacuum vector Ω is fixed under the action of Möb(M), and it spans the sub-
space of Möb(M)-fixed vectors of H .

• The vacuum vector Ω is cyclic for the joint actions of the algebras A(O). That is,
the subspace generated by the action of those algebras on Ω is dense in H .

• Anomaly cancellation: The subgroup Diff(S1) ⊂ Conf(M) that fixes the Cauchy
surface S1 × {0} ⊂ S1 × R acts honestly (as opposed to projectively) on H .

• Strong Haag duality: If U = O1 ∪ . . . ∪ On is a finite union of causally well
separated double cones, let us define A(U) := A(O1) ∨ . . . ∨ A(On) to be the
von Neumann algebra generated by A(O1), . . . ,A(On). With the above notation
in place, we demand that the algebra associated to the causal complement of U be
equal to the commutant of the algebra associated to U :

A(U ′) = A(U)′.
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Remark: Note that the locality axiom follows from the strong Haag duality axiom. We
keep it in the list of axioms because we will soon be interested in weakenings of the above
definition, where certain axioms are dropped.

At this point, one might ask why we have fixed our space-time manifold to be M =
S1×R, as opposed to some other conformally Minkowskian manifold. The reason is that
it is the above definition that is expected to line up with the correseponding Euclidian def-
inition of CFT . At the moment, that is still a conjecture. For example, the WZW models
associated to the group SU(n) have been fully constructed in the Minkowskian approach,
but not in the Euclidian approach.3 (The WZW models form an important class of CFT s.
There is one WZW model for every choice of compact, simple, simply connected Lie
group G, and every “level” k ∈ Z≥1.)

The notion that we have been so far calling “CFT ” is also called a full CFT .
Here are some related notions. We first present them in the Mikowskian approach:

Definition: A weak CFT is what one gets if one drops the ‘anomaly cancellation’ and
‘strong Haag duality’ axioms from the definition of a full CFT .

Definition: A chiral CFT is a weak CFT for which the algebra A(O) only depends on
the image of O under the projection M → M/F1, and such that the action of Conf(M)
on H factors through its projection to Diff(M/F1) ∼= Diff(S1).

Definition: An antichiral CFT is a weak CFT for which the algebraA(O) only depends
on the image ofO under the projectionM →M/F2, and such that the action of Conf(M)
on H factors through its projection to Diff(M/F2) ∼= Diff(S1).

We also have the following intermediate notion between full and weak CFT . We won’t
really need that notion, but we include it for completeness:

Definition: If one only drops the ‘anomaly cancellation’ from the definition of full CFT ,
then one gets a notion that I’ll call anomalous full CFT .

We should point out that there do exist models (=examples) of all the above notions.
Below is a Venn diagram that indicates how they all fit with respect to each other. In
particular, one sees that the classes of full, chiral, and antichiral CFT s are disjoint (with
the exception of the trivial CFT , the one with H = C, which is at the same time full,
chiral, and antichiral; it is omitted from the Venn diagram below).

3Actually, there seems to be disagreement among experts in the field as to whether those models have
been constructed or not...
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Weak CFT s anomalous full CFT sFull
CFT s

Chiral
CFT s

Antichiral
CFT s

These same concepts can also be formulated in the Euclidian approach:

Definition: A weak CFT is what one gets if one restricts our bordisms to be of the
following form:

Namely, every connected components of Σ should have genus zero, and have exactly
one outgoing boundary circle. Moreover, we should no longer require a map S1 → S2

between circles to induce a map HS1 → HS2 between the corresponding Hilbert spaces;
the latter should now only be well defined up to phase.4

Definition: An (anti)chiral CFT is a weak CFT for which the map gΣ : Hin → Hout

depends (anti)holomorphically on the choice of cobordism Σ.

For the latter definition to really make sense, we should also say what it means for a
family of complex cobordisms between two fixed ‘in’ and ‘out’ 1-manifolds to be holo-
morphic (which only makes sense if the manifold that parametrises the family is itself
complex). This would take us too far afield, and so we will not spell out the details here.
We will also refrain from discussing the notion of anomalous full CFT in the Euclidian
signature setup.

We will not have much further use of the Euclidian approach. We finish this chapter
by mentioning an open problem:

4Moreover, the formula for the anomaly that appears in footnote [1] needs to be modified.
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Conjecture: There are natural equivalences of categories{
Minkowskian full CFT s

}
'

{
Euclidian full CFT s

}
{

Minkowskian chiral CFT s
}

'
{

Euclidian chiral CFT s
}

{
Minkowskian antichiral CFT s

}
'

{
Euclidian antichiral CFT s

}

The chiral halves of a full CFT. If (H,Ω,A) is a full CFT then one can define its
associated chiral CFT (Hχ,Ωχ,Aχ) as follows — note that the procedure also makes
sense for an arbitrary weak CFT . This is done by defining

Aχ(O) :=
⋂

double cones Õ s.t.
p1(Õ) = p1(O)

A(Õ)

where p1 : M → M/F1 is the projection of M onto the leaf space of the foliation F1.
The vacuum vector Ωχ := Ω is unchanged, and one defines Hχ be the closure of the orbit
of Ω under the action of the algebras Aχ(O).

The action of the group Conf(M) on Hχ is somewhat tricky to define: the Hilbert
space Hχ is typically not invariant under the action of Conf(M) and so one cannot define
that action by restriction!

Here’s something that doesn’t quite work: Recall that we are looking for an action of
Diff(M/F1) on Hχ. Given an element g in that group, pick a lift g̃ ∈ Conf(M) whose
image in Diff(M/F2) is trivial and define the action of g on Hχ to be that of g̃.

The reason this doesn’t work is that the map

Conf(M)→ Diff(M/F1)×Diff(M/F2)

isn’t surjective. Indeed, Conf(M) has only two connected components whereas the right
hand side has four. So given g as above, there maybe isn’t any lift g̃ with the property that
its image in Diff(M/F2) is trivial.

The solution is to allow the lift g̃ to only satisfy a somewhat weaker condition than
that of having trivial image in Diff(M/F2). Let

p1 : M →M/F1 π1 : Conf(M)→ Diff(M/F1)

p2 : M →M/F2 π2 : Conf(M)→ Diff(M/F2).

be the projections. Let

Möb(S1) := PGL2(R) ⊂ Diff(S1)

be the subgroup of Möbius transformations (its identity component is PSL2(R)), and let
us call Möb(M/F1) and Möb(M/F2) the corresponding subgroups of Diff(M/F1) and
Diff(M/F2).
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We are now ready to define the action of Diff(M/F1) on Hχ. Given an element g
in that group, pick a lift g̃ ∈ Conf(M) with the property that π2(g̃) ∈ Möb(M/F2) and
define the action of g on Hχ to be that of g̃. The fact that this procedure is well defined
depends on the lemmas 3 and 5 below.

begin
of

technicallem
m

as→

Lemma 1 The group ker(π1 : Conf(M) → Diff(M/F1)) is the universal cover of
Diff+(M/F2) and we have a short exact sequence

0 −→ Z −→ ker(π1)
π2−→ Diff+(M/F2) −→ 0

whose kernel Z = 〈τ〉 is generated by the ‘twisted translation’ τ from picture (1).

Similarly, ker(π2 : Conf(M)→ Diff(M/F2)) is the universal cover of Diff+(M/F1).

Proof: The map π1 sends Conf↓(M) to orientation reversing diffeomorphisms of M/F1.
In particular, ker(π1 : Conf(M)→ Diff(M/F1)) = ker(π1 : Conf↑(M)→ Diff+(M/F1)).

Fix a leaf R of F1.
For every leaf L ofF2, the map p1 exhibits L as a universal cover ofM/F1. Moreover,

every element g ∈ ker(p1) induces a morphism of universal covers:

L g(L).

M/F1

g

p1 p1

Recall that, by the path lifting property, a morphism of universal covers is completely
determined by what it does to a single point. Since L∩R 6= ∅, the map g|L is completely
determined by g|R. This being true for every leaf L of F2, g is therefore completely de-
termined by its restriction to R.

A map f : R → R is the restriction of an element of ker(p1) iff it respects the equiv-
alence relation induced by F2. Upon identifying R with R, these are exactly the maps
f : R → R such that f(x + 1) = f(x) + 1. Finally, the group of periodic diffeomor-
phisms

Diffper(R) :=
{
f : R ∼→ R

∣∣ f(x+ 1) = f(x) + 1
}

is a universal cover of Diff+(S1), as can be seen from the fact that it is contractible (by
straight-line homotopies to the identity map) and that its projection to Diff+(S1) induces
a homeomorphism between small neighborhoods of the respective identity elements.

To finish the proof, we note that the kernel of π2 : Diffper(R) → Diff+(S1) is gener-
ated by the map x 7→ x+ 1, which is exactly the restriction of τ to R. �

Lemma 2 If g ∈ Conf(M) and O ⊂M is a double cone, then

ugAχ(O)u∗g = Aχ(gO).
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Proof: By the covariance axiom for A, we have ugA(O)u∗g = A(gO). It follows that:

ugAχ(O)u∗g = ug

( ⋂
double cones Õ s.t.
p1(Õ) = p1(O)

A(Õ)

)
u∗g =

⋂
double cones Õ s.t.
p1(Õ) = p1(O)

ugA(Õ)u∗g

=
⋂

double cones Õ s.t.
p1(Õ) = p1(O)

A(gÕ) =
⋂

double cones bO s.t.
p1( bO) = p1(gO)

A(Ô) = Aχ(gO).

�

Lemma 3 If g ∈ Conf(M) is such that π2(g) ∈ Möb(M/F2), then

ug(H
χ) = Hχ.

(Note that it is enough to check that ug(Hχ) ⊆ Hχ. Indeed, the statements ug(Hχ) ⊆ Hχ

and ug−1(Hχ) ⊆ Hχ together imply ug(Hχ) = Hχ.)

Proof: Let H◦ be the dense subspace of Hχ spanned by the vectors a1a2 . . . anΩ with
ai ∈ Aχ(Oi). By continuity, it is enough to argue that ug(H◦) ⊆ H◦. That is, we want to
show that uga1a2 . . . anΩ lives in H◦. That vector can be rewritten as

(uga1u
∗
g)(uga2u

∗
g) . . . (uganu

∗
g)ugΩ.

We have ugaiu∗g ∈ Aχ(gOi) by Lemma 2, and so it suffices to argue that ugΩ ∈ H◦.
Pick an element h ∈ Möb(M) such that π2(h) = π2(g), which is possible because the

map Möb(M) → Möb(M/F2) is surjective. Letting g0 := gh−1 we have then written g
as

g = g0h with g0 ∈ ker(π2), h ∈ Möb(M).

Since ugΩ = ug0uhΩ = ug0Ω (recall that Ω is Möbius-invariant), we have reduced our
problem to showing that ug0Ω ∈ H◦ for g0 ∈ ker(π2).

At this point, recall from Lemma 1 that π1 exhibits ker(π2) as the universal cover of
Diff+(M/F1). To simplify our notation, let us temporarily define

S1 := M/F1

Diff+(S1) := Diff+(M/F1)

D̃iff+(S1) := ker
(
π2 : Conf(M)→ Diff(M/F2)

)
.

For every interval I ⊂ S1, let us write Diff0(I) for the subgroup of Diff+(S1) that
fixes the complement of I pointwise. The groups Diff0(I) being contractible, we can
lift them canonically to subgroups of D̃iff+(S1). It is not too difficult to see that those
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subgroups generate a neighborhood of the identity in D̃iff+(S1) and that they therefore
generate the whole D̃iff+(S1). We can then rewrite our element g0 as the product

g0 = g1 . . . gn

of elements gi ∈ Diff0(Ii).
Let Oi be a double cone such that p1(Oi) = Ii, and let O′i be its causal complement.

The map gi fixesO′i pointwise and so by the covariance axiom, ugi commutes withA(O′i).
By Haag duality, it then follows that ugi ∈ A(Oi). The above reasoning holds for every
Õ such that p1(Õ) = Ii, therefore

ugi ∈
⋂

double cones Õ s.t.
p1(Õ) = p1(Oi)

A(Õ) = Aχ(Oi).

Finally, we get our desired equation ug0Ω = ug1 . . . ugnΩ ∈ H◦. �

Lemma 4 If g ∈ Conf(M) is in the kernel of π1, then ug commutes with Aχ(O).

Proof: Recall that ker(π1) is the universal cover of Diff+(M/F2) and that every element
g ∈ ker(π1) can be written as a product

g = g1 . . . gn

of elements gi supported in intervals Ii ⊂M/F2.
Let Oi be double cones with the property that p1(Oi) = p1(O) and p2(Oi) ∩ Ii = ∅.

Then gi fixes Oi pointwise, and so ugi commutes with Aχ(Oi) = Aχ(O). The product
ug = ug1 . . . ugn therefore also commutes with Aχ(O). �

Lemma 5 If g1, g2 ∈ Conf(M) are in the preimage of Möb(M/F2) and are such that
π1(g1) = π1(g2), then

ug1|Hχ = ug2|Hχ .

Proof: Let g := g1g
−1
2 . We need to show that ug acts trivially on Hχ. Clearly, it is

enough to show that it acts trivially on vectors of the form a1 . . . anΩ, ai ∈ Aχ(Oi). Since
g ∈ Möb(M), ug fixes Ω, and so we have

uga1 . . . anΩ = (uga1u
∗
g)(uga2u

∗
g) . . . (uganu

∗
g)ugΩ

= (uga1u
∗
g)(uga2u

∗
g) . . . (uganu

∗
g)Ω.

Since g ∈ ker(π1), the latter is then equal to a1 . . . anΩ by Lemma 4. �

→
end

of
technicallem

m
as

We have seen how, given a weak conformal field theory (H,Ω,A), one can define
its associated chiral conformal field theory (Hχ,Ωχ,Aχ). By exchanging the roles of
F1 and F2, one can similarly define the associated antichiral conformal field theory
(H χ̄,Ωχ̄,Aχ̄). These two sub-theories commute inside the big theory:
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Lemma For any double cones O1 and O2, the algebras Aχ(O1) and Aχ̄(O2) commute
inside B(H).

Proof: Recall that p1 : M →M/F1 and p2 : M →M/F2 denote the two projections.
Pick Õ1 so that

p1(Õ1) = p1(O1) and p2(Õ1) ∩ p2(O2) = ∅.

Then p2(O2) ⊂ p2(Õ′1).
Pick Õ2 so that

p2(Õ2) = p2(O2) and Õ2 ⊂ Õ′1.

Then

Aχ̄(O2) = Aχ̄(Õ2) ⊆ A(Õ2) ⊆ A(Õ′1) ⊆ A(Õ1)′ ⊆ Aχ(Õ1)′ = Aχ(O1)′.

�

Let us now assume thatA = (H,Ω,A) is a full CFT . From the above lemma, we see
that there is an inclusion

Aχ ⊗Aχ̄ ↪→ A

of the tensor product of the two chiral halves ofA into the full theory (note thatAχ⊗Aχ̄ is
typically only a weak CFT and that the above inclusion is typically not an isomorphism).

It is a basic problem of conformal field theory to classify all full CFT s with given
chiral halves. Namely:

Given a chiral CFT Al and an antichiral CFT Ar,
classify all full CFT s A such that Aχ ∼= Al and Aχ̄ ∼= Ar.

Digression: Points in space-time as homotopy classes of paths.

Recall that our space-time manifold M was defined to be S1 × R. In this section, we
provide an alternative, topological construction of M and of its foliations F1 and F2.

Consider the manifold X := S1 × [0, 1]. Here, the factor S1 should be thought of as
“geometric” and the factor [0, 1] should be thought of as “topological”. We then define
M to be the following space: its elements are triples (x, y, [γ]) where x is a point on
S1 × {1}, y is a point on S1 × {0}, and [γ] an isotopy class (with fixed end points) of
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paths γ : [0, 1]→ S1 × [0, 1] from x to y.

X = S1 × [0, 1]

x

y

γ

∂+

∂−

(x, y, [γ]) ∈M

The fibers of the projection map p1 : (x, y, [γ]) 7→ x define the foliation F1 on M , and
the fibers of p2 : (x, y, [γ]) 7→ y define the foliation F2. In that way, the upper boundary
∂+ of X gets naturally identified with M/F1 and its lower boundary ∂− gets naturally
identified with M/F2.

The group of diffeomorphisms of X (not necessarily orientation preserving) that send
∂+ to ∂+ and ∂− to ∂−, modulo isotopy in the bulk, is canonically isomorphic to Conf(M).
There is also a description of Möb(M) along the same lines. It is the group of diffeomor-
phisms of the 3-manifold D2× [0, 1] that restrict to conformal automorphisms of D2×{1}
and of D2 × {0} (not necessarily orientation preserving), modulo isotopy in the bulk.

Conformal nets = chiral CFTs

So far, a chiral CFT has been defined as a theory on M = S1 × R satisfying certain
conditions. But really, a chiral CFT is a theory that lives on S1. Actually, people who
work in that area don’t call these things “chiral CFT s”. Instead, they call them conformal
nets. Recall that Möb(S1) := PGL2(R) ⊂ Diff(S1) denotes the subgroup of Möbius
transformation of S1.

Let us agree that, from now on, an interval of S1 will always mean an open non-empty
interval with the property that its complement is not a single point (and of course, S1 itself
is not an interval).

Definition: A Conformal net consists of:

• A Hilbert space H , called the state space or vacuum sector of the chiral CFT .

• A continuous projective action of Diff(S1) on H that restricts to an honest action of
Möb(S1). The orientation preserving diffeomorphisms acts by projective unitaries
while the orientation reversing diffeomorphisms acts by projective antiunitaries.

• For every interval I ⊂ S1, a von Neumann algebra A(I).
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• A vector Ω ∈ H , called the vacuum vector.

The above pieces of data are subject to the following axioms:

• If I1 ⊆ I2, then A(I1) ⊆ A(I2).

• (locality) If I1 ∩ I2 = ∅, then [A(I1),A(I2)] = 0.

• A(gI) = ugA(I)u∗g for every g ∈ Diff(S1)

• If g fixes I pointwise, then [ug,A(I)] = 0.

• (positive energy) Let rt : S1 → S1 denote rotation by angle t and let Rt be the
corresponding unitary operator on H . Then there exists an unbounded positive
operator L0 such that Rt = eitL0 .

• Ω is cyclic for the joint action of all the algebras A(I) and it spans the Möb(S1)
fixed points of H that is, HMöb(S1) = RΩ.

The following is a slight weakening of the notion of conformal net:

Definition: A Möbius covariant conformal net is what one gets if one drops any refer-
ence to Diff(S1) in the above definition, and only keeps the Möbius group action.

Warning: In the literature, the term “conformal net” is also commonly used for what I’ve
been calling a “Möbius covariant conformal net”, in which case the term “diffeomorphism
covariant conformal net” will get used for the other notion.

In my opinion, the notion of a Möbius covariant conformal net is not a very important
one: the interesting Möbius covariant conformal nets tend to also be diffeomorphism co-
variant, and the few that are known not to be can be considered to be ‘pathological’ (they
are obtained by certain infinite tensor product constructions).

However, the notion of morphism of Möbius covariant conformal nets is important!
There exist many important morphisms between conformal nets that are only Möbius co-
variant. For example, the inclusion of the trivial conformal net (H = C,Ω = 1,A(I) =
C) into a non-trivial conformal net (H,Ω,A) is always Möbius covariant, but never dif-
feomorphism covariant. Another example of a morphism that is only Möbius covariant
(now in the 2-dimensional context) is the inclusion Aχ ↪→ A of the associated chiral
CFT into a given full CFT .

The following result is our first general structure theorem about conformal nets:

Theorem (Reeh-Schlieder) Let (H,Ω,A) be a Möbius covariant conformal net. Then
for any interval I ⊂ S1, the vacuum vector Ω is cyclic for the action of A(I) on H .

Proof: We’ll prove that A(I)Ω is dense by showing that its orthogonal complement is
trivial.
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Let J ⊂ S1 be an interval whose length is smaller than that of I . We claim that the
following implication holds:

ξ⊥A(I)Ω ⇒ ξ⊥A(J)Ω. (2)

Given a vector ξ ∈ H that is orthogonal to A(I)Ω and an element a ∈ A(J), we wish to
show that 〈ξ | aΩ〉 = 0. Consider the following function:

f(t) :=
〈
ξ
∣∣ RtaR−t︸ ︷︷ ︸
∈A(rt(J))

Ω
〉

=
〈
ξ
∣∣RtaΩ

〉
=
〈
ξ
∣∣ eitL0aΩ

〉
.

Since L0 is a positive operator, the last expression for f can be evaluated for any t ∈ C
with nonnegative imaginary part. It is analytic for=m(t) > 0 and continuous for=m(t) ≥
0. For more details on this argument, see the lemmas (z) after the proof. Moreover, it
vanishes identically on a certain subinterval of R (namely, those values of t for which
rt(J) ⊂ I). By the Schwarz reflection principle and the fact that non-zero analytic func-
tions cannot vanish identically on intervals, we conclude that f ≡ 0—see (z) for a
complete proof. Finally, evaluating f at t = 0 yields our desired relation 〈ξ | aΩ〉 = 0.

Let now J be any interval not containing I . We claim that, once again,

ξ⊥A(I)Ω ⇒ ξ⊥A(J)Ω (3)

holds. The key step is to note that there exists a conjugate subgroup {grtg−1}t∈R of
{rt} ⊂ Möb(S1) with which J can be “rotated” into I . Namely,

∃ g ∈ Möb(S1) such that grtg
−1(J) ⊂ I for some t ∈ R.

To construct such a subgroup of Möb(S1), one proceeds as follows. Identify S1 with the
boundary of the Poincaré disc (which is a model of the hyperbolic plane). Pick a point
x ∈ I not in J , and let p be a point in the interior of the disc, very close to x. Then the
group of hyperbolic rotations fixing p has all the desired properties:

I

J

p

The argument that was used for (2) can now be easily adapted to prove (3): just replace
L0 everywhere by ugL0u

∗
g.
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We are now ready for the main argument of this proof. Recall that we are trying to
show that

ξ⊥A(I)Ω ⇒ ξ = 0.

Since Ω is cyclic for the joint actions of all the algebras, it is enough to show that

〈ξ | a1a2 . . . anΩ〉 = 0

for any choice of elements ai ∈ A(Ii) and of intervals Ii. Fix an interval J ⊂ S1 that is
not contained in I , and whose length is bigger than that of all the Ii’s. By (3), we know
that ξ⊥A(J)Ω. Now consider the expression

f :=
〈
ξ
∣∣ (Rt1a1R−t1) . . . (RtnanR−tn)Ω

〉
=
〈
ξ
∣∣ eit1L0a1e

i(t2−t1)L0a2 . . . e
i(tn−tn−1)L0anΩ

〉
=
〈
ξ
∣∣ eiz1L0a1e

iz2L0a2 . . . e
iznL0anΩ

〉
as a function of zi := ti − ti−1. By construction, there exist small intervals Ki ⊂ R such
that

(zi ∈ Ki, ∀i) ⇒ f(z1, . . . , zn) = 0.

Namely, that happens when the rotation angles ti are such that rti(Ii) ⊂ J for every i.
Applying the same analytic continuation argument used in (2) to f viewed as a function
of just z1, we learn that

(z2 ∈ K2, . . . , zn ∈ Kn) ⇒ f(z1, . . . , zn) = 0.

By the same argument applied to f as a function of just z2, we get

(z3 ∈ K3, . . . , zn ∈ Kn) ⇒ f(z1, . . . , zn) = 0.

Eventually, after n steps of the above procedure, we learn that f ≡ 0. Finally, plugging
in z1 = z2 = . . . = 0 into the definition of f , we see that 〈ξ | a1a2 . . . anΩ〉 = 0. �

The main argument of the above proof was a functional analytical version of the notion
of analytic continuation. Here is some background material that we didn’t spell out above:

(z) Lemma Let L be an unbounded positive self-adjoint operator on some Hilbert
space H . Then the function t 7→ eitL is analytic for =m(t) > 0 with respect to the norm
topology on B(H).

Proof: By the spectral theorem, L is unitarily equivalent to the operator mf : L2(X) →
L2(X) of multiplication by some (unbounded) function f : X → R≥0 on some measure
spaceX . The Banach space L∞(X) embeds isometrically intoB(H), and so the question
reduces to the analyticity of the function

C=m(z)>0 → L∞(X)

t 7→ eitf
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with respect to the sup-norm on L∞(X).
Thus, we have to show that lim

h→0

ei(t+h)f−eitf
h

exists in the sup-norm for any t ∈ C=m(z)>0,

and that ifeitf is sup-norm continuous in t. This is indeed the case because the limits

ei(t+h)x − eitx

h

h→0−−−→ ixeitx and ixei(t+h)x h→0−−−→ ixeitx

are uniform on [0,∞). �

(z) Lemma Let L be an unbounded positive operator on H , and let η ∈ H be a
vector in the Hilbert space. Then the function t 7→ eitLη is continuous for =m(t) ≥ 0
with respect to the norm topology on H .

Warning: The function t 7→ eitL is typically not norm-continuous on C=m(z)≥0 !

Proof: Once again, by the spectral theorem, we can replace H by L2(X), and L by some
multiplication operator mf . The question then reduces to the continuity of

C=m(z)≥0 → L2(X)

t 7→ eitfη

with respect to the L2-norm. We will show the continuity of the above function by arguing
that for any ε > 0, it is ε-close to a continuous function.

We assume without loss of generality that ‖η‖ = 1. The sequence of subspaces
Xn := {x ∈ X | f(x) < n} exhausts X , so we may chose n ∈ N so that ‖η − η|Xn‖ < ε.
Here, η|Xn denotes the function given by η onXn and zero on the rest. Since f is bounded
on Xn, it is easy to see that

C=m(z)≥0 → L2(Xn) ↪→ L2(X)

t 7→ eitfη 7→ eitfη|Xn

is analytic, and in particular continuous. To finish the argument, we note that ‖eitf‖ ≤ 1,
and so eitfη|Xn is indeed ε-close eitfη. �

The following consequence of the Schwarz reflection principle was also used in the
proof of the Reeh-Schlieder theorem:

(z) Lemma Let f : C=m(z)≥0 → C be a continuous function whose restriction to
C=m(z)>0 is analytic, and whose restriction to [−1, 1] is identically zero. Then f ≡ 0.

Proof: Consider the function

f̂ : C \
(
(−∞,−1) ∪ (1,∞)

)
−→ C

given by f(z) on the upper half plane and f(z̄) on the lower half plane. It is clearly
continuous and holomorphic away from [−1, 1]. We claim that f̂ is also holomorphic on
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the interval (−1, 1). To see that, consider the following contours in C:

C+
ε

C−ε

ε
ε

C

1

By Cauchy’s residue formula, we have

f̂(z) =
1

2πi

∮
C+
ε ∪C−ε

f̂(w)

w − z
dw

for any z ∈ D such that |=m(z)| > ε. Taking the limit as ε → 0 and noting that the
contributions along the real axis cancel each other, we get

f̂(z) =
1

2πi

∮
∂D

f̂(w)

w − z
dw

for any z ∈ D such that =m(z) 6= 0. By continuity, the last formula then also holds
for z on the real axis. Finally, the right hand side is analytic for every z ∈ D (including
=m(z) = 0) because each of the functions f̂(w)

w−z is.
The function f̂ is analytic and vanishes on a whole interval: it is therefore identically

zero, and the same must then also hold for f (by continuity). �

The WZW models

The WZW models form an important family of full CFT s. They are parametrized by
pairs (G, k), where G is a compact, simple, connected, simply connected (abbreviated
hereafter ‘cscsc’) Lie group, and k is a positive integer, commonly referred to as the
“level” (one can also go beyond simply connected Lie group, but we shall not discuss
those models here). The chiral WZW models are the chiral CFT s associated to the above
full CFT s. To avoid possible confusions, we shall call the latter the full WZW models.

Our general approach will be as follows: we’ll first construct the chiral WZW models,
prove various theorems about them, and only at the very end will we then use them to
construct the full WZW models.

Throughout these notes, we’ll emphasize the caseG = SU(2). We’ll formulate things
in full generality when it doesn’t cost much to do so... but only then. Therefore, quite
often, we’ll present the case SU(2) first, and only quickly mention what needs to be
modified to take care of general cscsc groups G, but without going too much in depth.
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Let:
g := the complexified Lie algebra of G
Lg := C∞(S1, g) with bracket defined pointwise

L̃gk := Lg⊕ C with bracket given by[
(f, a), (g, a′)

]
k

:=
(

[f, g], k
2πi
·
∫
S1

〈f, dg〉
)

Here, 〈 , 〉 : g × g → C is the inner product on g given as follows. For G = SU(2),
we have g = sl(2) and 〈 , 〉 is given by the formula 〈X, Y 〉 := −tr(XY ), equivalently,〈
( a bc d ), ( a

′ b′

c′ d′ )
〉

= −(aa′ + bc′ + cb′ + dd′). The minus in the formula ensures that this
inner product is positive definite when restricted to su(2) ⊂ sl(2).

For the case of general cscsc Lie group G, one defines 〈 , 〉 to be the smallest g-
invariant inner product on g whose restriction to any sl(2) ⊂ g is a positive integer mul-
tiple of (X, Y ) 7→ −tr(XY ). This inner product is the negative of what is traditionally
called the “basic inner product” (the latter is negative definite on the Lie algebra of G,
which is why we don’t like it and prefer to work with its opposite). Note that we have
used the word “inner product” despite the fact that it is bilinear as opposed to sesquilinear.

Here, a bilinear inner product 〈 , 〉 : g× g→ C is called g-invariant if it satisfies

〈[X, Y ], Z〉 = 〈X, [Y, Z]〉

for all X, Y, Z ∈ g. The terminology attached to that strange looking formula is justified
by the following fact, which we leave as an exercise:

Exercise: Let G be a connected Lie group with Lie algebra g (complexified or not).
Prove that a bilinear inner product 〈 , 〉 on g satisfies 〈[X, Y ], Z〉 = 〈X, [Y, Z]〉 for all
X, Y, Z ∈ g iff it satisfies 〈Ad(g)X,Ad(g)Y 〉 = 〈X, Y 〉 for all X, Y ∈ g and g ∈ G.
Hints: To show ⇐, replace g by etZ and differentiate with respect to t. For the other
implication ⇒, show that 〈Ad(etZ)X,Ad(etZ)Y 〉 is constant by arguing that its deriva-
tive is zero. Then use the fact that G is connected to write any element as a product of
exponentials.

Note: Our inner product on g is defined completely invariantly. As a consequence, it
is invariant under all automorphisms of g, not just the inner ones:〈

α(X), α(Y )
〉

= 〈X, Y 〉 ∀α ∈ Aut(g).

Before going on, let us check that [ , ]k is indeed a Lie bracket. Antisymmetry boils
down to ∫

S1

〈f, dg〉 = −
∫
S1

〈df, g〉,

which is just integration by parts. In order to verify the Jacobi identity, we have to check
that the last term in the expression∑

1 2

3

[[
(f1, a1), (f2, a2)

]
k
, (f3, a3)

]
k

=

(∑
1 2

3

[[f1, f2], f3], k
2πi
·
∑
1 2

3

∫
S1

〈[f1, f2], df3〉
)
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vanishes. This is indeed the case since:∫
S1

〈[f1, f2], df3〉︸ ︷︷ ︸+

∫
S1

〈[f2, f3], df1〉+

∫
S1

〈[f3, f1], df2〉

= −
(∫

S1

〈[df1, f2], f3〉+

∫
S1

〈[f1, df2], f3〉
)
.

by parts

= =

by g-invariance of 〈 , 〉

A few notions of Lie algebra cohomology. Given a Lie algebra L, a bilinear function
c : L× L→ C is called a 2-cocycle if the operation[

(f, a), (g, a′)
]
c

:=
(
[f, g], c(f, g)

)
(4)

on L ⊕ C satisfies the axioms of a Lie bracket. Concretely, this translates into these two
conditions for c:

c(f, g) = −c(g, f) and c([f, g], h) + c([g, h], f) + c([h, f ], g) = 0

for every f, g, h ∈ L.
The resulting Lie algebra L̃c := (L⊕C, [ , ]c) is called a central extension of L by C,

and fits into the following short exact sequence of Lie algebras:

0 −→ C −→ L̃c −→ L −→ 0.

The fact that a and a′ do not appear in the right hand side of (4) reflects the fact that C is
in the center of L̃c, hence the name central extension.

Two central exentsions L̃c and L̃c′ corresponding to cocycles c and c′ are said to be
isomorphic if there exists a commutative diagram

0 −→ C −→ L̃c −→ L −→ 0

0 −→ C −→ L̃c′ −→L −→ 0.

↓ ↓ idL↓idC

where the vertical arrows on the left and on the right are identity maps. Note that this
is much stronger than just requiring an isomorphism of short exact sequences (where the
left and right vertical maps are allowed to be anything), which is itself much stronger than
requiring a mere isomorphism L̃c ∼= L̃c′ .

An isomorphism of central extensions (L ⊕ C, [ , ]c) → (L ⊕ C, [ , ]c′) is always of
the form (f, a) 7→ (f, a + b(f)) for some linear functional b : L→ C. The two cocylces
c and c′ are then related by

c′(f, g) = c(f, g) + b([f, g]).
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Two 2-cocycles that are related by the above relation are called cohomologous, and the
quotient vector space

H2(L) :=
{

2-cocylces}
/
f ∼ g if f and g are cohomologous

is called the second cohomology group of L (with coefficients in C). By construction,
there is a natural bijection between elements of H2(L) and isomorphism classes of cen-
tral extensions of L by C.

In the case when our Lie algebra L is equipped ith a natual topology (such as our
example of interest L = Lg), it is natural to restrict attention to continuous 2-cocycles,
and to the equivalence relation generated by continuous isomorphisms of central exten-
sions. The resulting cohomology groups are then called the second continuous cohomol-
ogy groups of L with coefficients in C, and is denoted H2

cts(L). The following result will
not be proved (and also not used) in this class:

Theorem If g is a simple Lie algebra, then its second continuous cohomology group is
one dimensional:

H2
cts(Lg) ∼= C,

and it is generated by the (equivalence class of the) 2-cocycle (f, g) 7→ 1
2πi

∫
S1〈f, dg〉.

We’ll only prove the following watered down version of this theorem:

Lemma For every k 6= 0, the 2-cocycle k
2πi

∫
S1〈f, dg〉 generates a non-trivial central

extension of Lg.

Proof: Pick X ∈ g with 〈X,X〉 6= 0 and consider two functions f, g : S1 → g whose
graphs look roughly as follows:

f(x) g(x)

S1

They are R-valued as drawn, so multiply them by X to make them g-valued. The com-
mutator [(f, 0), (g, 0)]k = k

2πi

∫
S1〈f, dg〉 is non-zero and lies in the center C of L̃gk. Now,

in a trivial central extension, it is not possible to express a non-zero element of the center
as a commutator: Contradiction  . Hence L̃gk is non-trivial. �

To help us formulate things most cleanly, I’ll introduce the following non-standard
terminology (here “non-standard terminology” mean that I just invented a name for this):

Definition: A Lie algebra with unit is a pair (L, 1L) consisting of a Lie algebra L, and a
distinguished central element 1L ∈ Z(L).

A representation of a Lie algebra with unit (L, 1L) on a vector space V is a represen-
tation of L on V in which 1L acts as 1. Equivalently, it is a homomorphism of Lie algebras
with unit (L, 1L)→ (gl(V ), 1V ).
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Example: The pair

L̃gk :=
(

(Lg⊕ C, [ , ]k), 1fLgk
:= (0, 1)

)
is a Lie algebra with unit. Note that L̃gk → L̃gk′ : (f, a) 7→ (f, k

′

k
a) is an isomorphism

of Lie algebras, but not of Lie algebras with unit as it does not send 1 to 1. As it turns out,
L̃gk and L̃gk′ are not isomorphic as Lie algebras with unit unless k = ±k′.

Lemma If k 6= ±k′, then L̃gk and L̃gk′ are not isomorphic as Lie algebras with unit.

Note: A unital isomorphism L̃gk ' L̃g−k is provided by the map (f, a) 7→ (f ◦ ·̄, a),
where ·̄ denotes complex conjugation on S1.

Proof: An isomorphism α : L̃gk → L̃gk′ of Lie algebras with unit induces an isomor-
phism of short exact sequences

0 −→ C −→ L̃gk −→ Lg −→ 0

0 −→ C −→ L̃gk′ −→Lg −→ 0

↓α ↓↓idC ᾱ (5)

The manifold S1 can be identified with the set of maximal ideals of Lg: to a point x
corresponds the ideal mx ⊂ Lg of functions that vanish at x. Let φ : S1 → S1 be the
diffeomorphism uniquely given by ᾱ(mx) = mφ−1(x). For every point x ∈ S1, let us also
define αx ∈ Aut(g) by

αx : g ' Lg/mφ(x)
ᾱ−→ Lg/ᾱ(mφ(x)) = Lg/mx ' g.

Then the automorphism ᾱ can then be recovered as ᾱ(f)(x) = αx(f ◦ φ(x)).
The following calculation now shows that our standard cocycle c(f, g) = 1

2πi

∫
S1〈f, dg〉

pulls back to plus or minus itself under the action of ᾱ:

1
2πi

∫
S1

〈
ᾱ(f), dᾱ(g)

〉
= 1

2πi

∫
S1

〈αx(f◦φ(x)), αx(dg◦φ(x))〉 = 1
2πi

∫
S1

〈f◦φ, dg◦φ〉 = ± 1
2πi

∫
S1

〈f, dg〉.

More precisely, c pulls back to itself if φ is orientation preserving and to minus itself if φ
is orientation reversing. Let us now define

k′′ :=

{
k′ if φ is orientation preserving
−k′ if φ is orientation reversing.

By the above result about cocycles, the following is an isomorphism of short exact se-
quences:

0 −→ C −→ L̃gk′′ −→ Lg −→ 0

0 −→ C −→ L̃gk′ −→Lg −→ 0

↓ ᾱ⊕1 ↓↓idC ᾱ (6)
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Composing (5) with the inverse of (6), we see that (ᾱ−1⊕ 1) ◦α induces an isomorphism
of central extensions between L̃gk and L̃gk′′ (that is, an isomorphism between short exact
sequences where both the left and right vertical maps are identity maps). The 2-cocycles
kc and k′′c are therefore cohomologous. But we have seen in the previous lemma that the
map λ 7→ [λc] : C→ H2(Lg) is injective. Hence k = k′′. �

Next step towards the construction of the χχχWZW model: pick a Representation.

Our next goal is to construct a suitable representation of L̃gk, the so-called vacuum re-
presentation. As a first step towards that goal, one defines the subalgebra

Lg≥0 ⊂ Lg

as follows. By definition, it is the set all of functions S1 → g that are boundary values
of holomorphic functions on the unit disk D. Equivalently, these are the functions whose
Fourier series (= Laurent series) only involves non-negative terms (non-negative powers
of z).

By the residue theorem, the 2-cocycle (f, g) 7→ k
2πi

∫
S1〈f, dg〉 vanishes identically on

Lg≥0. The subalgebra (
Lg≥0 ⊕ C, [ , ]k

)
of L̃gk therefore splits as a direct sum of Lie algebras (and in particular, it doesn’t depend
on k).

Let C0 denote the trivial 1-dimensional representation of Lg≥0 ⊕ C, where the action
of Lg≥0 is identically zero, and 1 ∈ C acts by 1. We will denote by Ω the standard basis
vector of C0. We then define

W0,k := Ind
fLgk
Lg≥0⊕CC0.

to be the corresponding induced representation. This space can be described as the tensor
product of the universal enveloping algebra of L̃gk with the representation C0 over the
universal enveloping algebra of Lg≥0 ⊕ C. More down to earth, W0,k is the set of formal
linear combinations of expressions of the form f1f2 . . . fnΩ (physicists would use the
notation |f1f2 . . . fnΩ〉) with fi ∈ L̃gk, modulo the equivalence relation generated by:{

The symbol f1f2 . . . fnΩ
depends linearly on fi

The action of L̃gk on W0,k

is a Lie algebra action {
The action of Lg≥0 ⊕ C on
Ω is prescribed

• f1f2 . . . (λfi) . . . fnΩ = λ · f1 . . . fnΩ for λ ∈ C
• f1 . . . (f

′
i + f ′′i ) . . . fnΩ = f1 . . . f

′
i . . . fnΩ + f1 . . . f

′′
i . . . fnΩ

• f1 . . . fifi+1 . . . fnΩ− f1 . . . fi+1fi . . . fnΩ = f1 . . . [fi, fi+1] . . . fnΩ

• f1f2 . . . fnΩ = 0 if fn ∈ Lg≥0

• f1f2 . . . 1 Ω = f1f2 . . . fn−1Ω

Note: By the third and fifth relations, it is sufficient to use fi ∈ Lg ⊂ L̃gk in order to
write any element of W0,k.
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We will now present a couple of lemmas that we’ll prove only much later (the proofs
are actually rather difficult), and only for the case G = SU(n).

The Lie algebra L̃gk is equipped with the following natural ∗-operation:

(f, a)∗ := (f ∗, ā) (f ∈ Lg, a ∈ C)

Here, f ∗(x) = f(x)∗ for x ∈ S1, where ∗ is the unique antilinear operation on g with the
property that X = −X∗ iff X is in the Lie algbera of G. (For G = SU(n), this is the
usual ∗-operation on n × n matrices.) Let us call an action ρ of a ∗-Lie algebra L on a
vector space W unitary with respect to some inner product 〈 , 〉 on W if

〈ρ(X)v, w〉 = 〈v, ρ(X∗)w〉

for all X ∈ L, and all v, w ∈ W .

Lemma The vector spaceW0,k carries a unique positive semi-definite inner product with
respect to which 〈Ω,Ω〉 = 1, and the action of L̃gk is unitary.

The existence and positive semi-definiteness are difficult, but the uniqueness part of
the statement is not too difficult to prove:

Proof of uniqueness: It is enough to determine the value of expressions of the form
〈f1f2 . . . fnΩ,Ω〉, fi ∈ Lg, since the more general ones 〈f1f2 . . . fnΩ, g1g2 . . . gmΩ〉 can
easily be reduced to those by bringing the gi’s to the other side.

Let us suppose that, by induction, we have determined the values of 〈f1f2 . . . fn−1Ω,Ω〉
for every f1, . . . , fn−1 ∈ Lg. We then want to determine

〈f1f2 . . . fnΩ,Ω〉.

Decompose f1 as f+
1 + f−1 with f+

1 ∈ Lg≥0 and f−1 ∈ Lg≤0. (Here, Lg≤0 ⊂ Lg denotes
the functions that extend to holomorphically to |z| ≥ 1, including∞.)

Mini-lemma: If f ∈ Lg≤0, then f ∗ ∈ Lg≥0.
Proof: If F (z) is a holomorphic extension of f defined for |z| ≥ 1, then F (1/z̄)∗ is a
holomorphic extension of f ∗ defined for |z| ≤ 1. �

We can then write〈
f1f2 . . . fnΩ,Ω

〉
=
〈
f+

1 f2 . . . fnΩ,Ω
〉

+
〈
f−1 f2 . . . fnΩ,Ω

〉
=
〈
f+

1 f2 . . . fnΩ,Ω
〉

+
〈
f2 . . . fnΩ, (f−1 )∗Ω︸ ︷︷ ︸ 〉

=0
=

〈
[f+

1 , f2]f3f4 . . . fnΩ,Ω
〉

+
〈
f2[f+

1 , f3]f4 . . . fnΩ,Ω
〉

+
〈
f2f3[f+

1 , f4] . . . fnΩ,Ω
〉

+ · · · · · ·
+
〈
f2f3f4 . . . [f

+
1 , fn]Ω,Ω

〉
+
〈
f2f3f4 . . . fn f

+
1 Ω︸︷︷︸
=0

,Ω
〉Those terms have only n− 1

things acting on Ω and so
their value is already known
by induction.

(7)
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. �

Let H0,k be the Hilbert space completion of W0,k/(null-vectors).

Lemma The action of L̃gk on H0,k exponentiates to a projective unitary action of the
loop group LG := C∞(S1, G).

(Once again, the proof of this lemma is difficult.)

We are now ready to define the chiral WZW conformal nets (but, unfortunately, only as a
Möbius covariant conformal net—we’ll need to do more work to construct the projective
action of Diff(S1)):

Definition: The Chiral WZW Conformal Net for G at level k is given by:

• The Hilbert space is H0,k =
[
Hilbert space completion of Ind

fLgk
Lg≥0⊕CC0

/
(null-vectors)

]
• The action

ug
(
f1f2 . . . fnΩ

)
:= (g · f1)(g · f2) . . . (g · fn)Ω

of g ∈ Möb(S1) on f1f2 . . . fnΩ ∈ H0,k is expressed in terms of the action

(
g · f

)
(z) :=

{
f(g−1(z)) if g ∈ Möb+(S1)

−f(g−1(z))∗ if g ∈ Möb−(S1).

on elements f ∈ Lg. In the formula for g · f when g ∈ Möb−(S1), the ∗ ensures
that the action is complex antilinear and that f ∈ Lg≥0 ⇒ g · f ∈ Lg≥0. The minus

sign is then needed so that
{
Lg→ Lg

f 7→ g ·f and
{

L̃gk → L̃gk
(f, a) 7→ (g ·f, ā)

be compatible with

the Lie brackets.

• The vacuum vector is Ω.

• The local algebras AG,k(I) are given by

AG,k(I) :=
{
uγ
∣∣ γ ∈ LIG}′′

where LIG = {γ ∈ LG | supp(γ) ⊂ I} is the local loop group, consisting of
all loops supported in I . Here, uγ is the operator (well defined up to phase) that
corresponds to a loop γ ∈ LG.

We recall that, in the definition of AG,k(I), the double prime indicates the operation of
taking the von Neumann algebra generated by.

The Lie algebra Lg comes with the following four subspaces, of which we have al-
ready seen some:

Lg≥0 =
{∑

n≥0Xnz
n |Xn ∈ g

}
Lg>0 =

{∑
n>0Xnz

n |Xn ∈ g
}

Lg≤0 =
{∑

n≤0Xnz
n |Xn ∈ g

}
Lg<0 =

{∑
n<0Xnz

n |Xn ∈ g
}
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Recall that the vacuum vector Ω is annihilated by the elements of Lg≥0. The following
lemma should sound therefore feel intuitive:

Lemma The vectors of the form f1f2 . . . fnΩ with fi ∈ Lg<0 span a dense subspace of
the vacuum sector H0,k.

Proof: By definition, vectors of the form f1f2 . . . fnΩ with fi ∈ Lg span a dense subspace
of H0,k. We argue by induction on n that every such element can be rewritten as a linear
combination of vectors with fi ∈ Lg<0.
• Case n = 0: vacuously satisfied.
• Induction step: We assume that all expressions of length n − 1 have been dealt with,
and consider f1f2 . . . fnΩ, fi ∈ Lg. By the induction hypothesis, we may assume that
f2, . . . , fn ∈ Lg<0. Writing f1 as f+

1 + f−1 with f+
1 ∈ Lg≥0 and f−1 ∈ Lg<0, we have

f1f2 . . . fnΩ = f+
1 f2 . . . fnΩ + f−1 f2 . . . fnΩ

= [f+
1 , f2]f3f4 . . . fnΩ + f−1 f2 . . . fnΩ

+ f2[f+
1 , f3]f4 . . . fnΩ

+ f2f3[f+
1 , f4] . . . fnΩ

+ · · · · · ·
+ f2f3f4 . . . [f

+
1 , fn]Ω

+ f2f3f4 . . . fn f
+
1 Ω︸︷︷︸
=0

and so we’re done by induction. �

Corollary The vacuum sector H0,k is topologically spanned (i.e., they span a dense sub-
space) by vectors

(X1z
−a1)(X2z

−a2) . . . (Xnz
−an)Ω, (8)

with Xi ∈ g and ai > 0.

Proof: By the previous lemma, it is enough to argue that every f1f2 . . . fnΩ with fi ∈
Lg<0 can be approximated by linear combinations of vectors of the form (8).

Let us assume for the moment that lim
N→∞

fNi = fi in the C∞ topology implies

lim
N→∞

fN1 f
N
2 . . . fNn Ω = f1f2 . . . fnΩ (9)

in the Hilbert space. The argument then goes as follows. Approximate each function
fi =

∑
n<0

Xi,nz
n by a finite Fourier series fNi :=

∑
−N<n<0

Xi,nz
n. Since fNi → fi in the C∞

topology, we have fN1 f
N
2 . . . fNn Ω → f1f2 . . . fnΩ by our assumption (9). Finally, we

note that fN1 f
N
2 . . . fNn Ω is a linear combination of vectors of the form (8).

We now turn to the proof of (9). By carefully examining (7), we note that the only
operations that get used in the computation of 〈g1g2 . . . gnΩ, h1h2 . . . hmΩ〉 are those of
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differentiation and of projection onto Lg≥0. These operations preserve smoothness (recall
that a function is smooth iff its Fourier coefficients decay rapidly—it is quite obvious that
the operator of projection onto Lg≥0 preserves that property) and are continuous in the
C∞ topology. Therefore, the above inner product depends continuously on the functions
gi and hi (in the C∞ topology). In particular, taking gi = hi = fNi , we get

‖fN1 fN2 . . . fNn Ω‖2 → ‖f1f2 . . . fnΩ‖2

and taking gi = fNi , hi = fi, we get

〈fN1 fN2 . . . fNn Ω, f1f2 . . . fnΩ〉 → ‖f1f2 . . . fnΩ‖2.

For convenience, let us write ξN = fN1 f
N
2 . . . fNn Ω and ξ = f1f2 . . . fnΩ. We then have

lim
N→∞

‖ξN − ξ‖2 = lim
N→∞

(
〈ξN , ξN〉 − 〈ξN , ξ〉 − 〈ξ, ξN〉+ 〈ξ, ξ〉

)
= 0.

�

The strange minus signs in the above corollary might make one doubt that the positive
energy condition is satisfied... but everything is ok:

Lemma The operator L0 that generates the action of rotations on H0,k has positive
spectrum.

Proof: Recall that if we let Rt : H0,k → H0,k be the operator that corresponds to the
rotation rt : z 7→ eitz then, by definition, we have Rt = eitL0 , and thus

L0 = −i d
dt

∣∣∣
t=0
Rt.

Let us also recall that the action of g ∈ Möb+(S1) is given by

ug
(
f1f2 . . . fnΩ

)
:= (f1 ◦ g−1)(f2 ◦ g−1) . . . (fn ◦ g−1)Ω.

We now argue that the spanning set {(X1z
−a1)(X2z

−a2) . . . (Xnz
−an)Ω} constructed in

the previous corollary consists of eigenvectors of L0 with positive eigenvalues. Indeed,
we have

−i d
dt

∣∣∣
t=0

(
z−a ◦ r−t

)
= −i d

dt

∣∣∣
t=0

(
eitaz−a

)
= az−a,

and so

L0 (X1z
−a1)(X2z

−a2) . . . (Xnz
−an)Ω

= −i d
dt

∣∣
t=0

(X1z
−a1 ◦ r−t)(X2z

−a2 ◦ r−t) . . . (Xnz
−an ◦ r−t)Ω

=− i d
dt

∣∣
t=0

eit
P
ai(X1z

−a1)(X2z
−a2) . . . (Xnz

−an)Ω

=
[ n∑
i=1

ai

]
(X1z

−a1)(X2z
−a2) . . . (Xnz

−an)Ω.
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Finally, we note that
∑
ai ≥ 0. �

Representations of conformal nets.

Our next goal is to construct the irreducible representations of the chiral WZW conformal
nets AG,k. But first, some definitions:

Definition: A representation (or sector) of a conformal net (H0,Ω,A) consists of:

• A Hilbert space H

• For every interval I ⊂ S1, an action ρI : A(I)→ B(H)

such that ρI = ρJ |A(I) whenever I ⊂ J .

The following is a consequence of the above definition:

Lemma If H is a representation of A, and I1 and I2 are two disjoint intervals, then the
algebras ρI1(A(I1)) and ρI2(A(I2)) commute inside B(H).

Proof: If the union of I1 and I2 is not dense in S1, then we may pick an interval K ⊂ S1

that contains them both. The maps ρIi : A(Ii)→ B(H) factor throughA(K) and because
A(I1) andA(I2) commute inA(K), so do their images ρK(A(I1)) and ρK(A(I2)) inside
ρK(A(K)) ⊂ B(H).

Let us now assume that I1 ∪ I2 is dense in S1, namely that I2 = I ′1. We claim that⋃
J(I2

A(J)

is dense in A(I2) in the strong operator topology.5

Sub-lemma: The subalgebra
⋃
J(I A(J) is dense in A(I) in the strong operator

topology.
Proof: The denseness of

⋃
J(I A(J) insideA(I) is a general fact, but we’ll only prove

it under the additional assumption (easily verified in all examples of interest) that
H0 is separable. If H0 is separable, then the unit ball of B(H0) is separable and
metrizable. Exercise: If (ξn)n∈N is a sequence of vectors that is dense in the unit ball
of H0, then the metric d(a, b) :=

∑
1

2n
‖a(ξn) − b(ξn)‖ recovers the strong operator

topology on the unit ball of B(H0).
Let us identify I with [−1, 1]. Assuming by contradiction that

⋃
r<1A[−r, r] is not

dense in A([−1, 1]), there exists an element a1 in the unit ball of A([−1, 1]) whose
distance to

⋃
r<1A[−r, r] is ε > 0. Similarly, for every real number x ∈ (0, 1), there

is an element ax in the unit ball of A([−x, x]) that is at the same distance ε > 0
from

⋃
r<xA[−r, r] (use Möbius covariance). This yields an uncountable family of

elements (ax)x∈(0,1) that form a discrete subspace of the unit ball of B(H0), contra-
dicting the fact that it is separable. �

5Recall that, by definition, ai → a in the strong operator topology if ai(ξ)→ a(ξ) for every ξ ∈ H .
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The algebra A(I1) commutes with
⋃
A(J) by the first argument and so by continuity it

commutes with all of A(I2) (this uses the fact that the commutator map a 7→ [a, b] is
continuous for the strong operator topology). �

Construction of representations ofAG,k. Let Vλ be an irreducible unitary representation
(necessarily finite dimensional) of the Lie algebra g. That is, we have a Lie algebra
homomorphism ρλ : g → gl(Vλ) satisfying ρλ(X

∗) = ρλ(X)∗. Here, λ denotes the
highest weight of Vλ which, in the case g = sl(2), is just a element of Z≥0.

Let us spend some time to recall the theory of finite dimensional unitary representa-
tions of sl(2). The Lie algebra sl(2) has a basis given by

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
and commutation relations

[X, Y ] = H [H,X] = 2X [H,Y ] = −2Y.

The irreducible unitary representations of sl(2) are as indicated in the following figure:

Highest
weight λ:

physics
name: “spin 0” “spin 1

2” “spin 1” “spin 3
2” “spin 2”

0 1 2 3 4 . . .

Irrep Vλ: •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

Y X

Y X

Y X

Y X

Y X

Y X

Y X

Y X

Y X

Y X

H
1

H
−1

H
2

H
0

H
−2

H
3

H
1

H
−1

H
−3

H
4

H
2

H
0

H
−2

H
−4

H
0

Figure: The irreducible unitary representations of sl(2)

We have dim(Vλ) = λ + 1 and each bullet represents a basis element of Vλ. The action
of the generators X , Y , H of sl(2) are indicated by the arrows between the bullets. If
we call vi the basis element that corresponds to the ith bullet (the top one being v0) then,
for example, a red arrow between the ith and the (i + 1)st bullet indicates the relation
Y (vi) = avi+1 for some non-zero scalar a. If we normalize the basis vectors vi so that
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‖vi‖ = 1, and so that the structure constants for X and Y are positive, then the action is
given by:

X(vi+1) =
√

(i+ 1)(λ− i)vi Y (vi) =
√

(i+ 1)(λ− i)vi+1

H(vi) = (λ− 2i)vi.

The last equation is usually referred to by saying that “vi has weight λ− 2i” (the weights
are indicated in gray in the picture).

Note that we could get rid of the square roots if we dropped the condition ‖vi‖ = 1.
The price to pay would be that the relation X∗ = Y would no longer be visible from the
presentation of the action.

The next step in order to construct a representation of AG,k is to endow Vλ with an
action of Lg≥0 ⊕ C. We do so by letting an element f : S1 → g⊂

D
F

holomorphic extension of f

of Lg≥0 act by F (0),
and 1 ∈ C act by 1.

As before, we then consider the induced representation

Wλ,k := Ind
fLgk
Lg≥0⊕CVλ.

We now present a couple of lemmas without proofs:

• Lemma The representation Wλ,k admits a unique L̃gk-invariant inner product that
agrees given to us on Vλ. Moreover, if k ∈ Z≥0 and if λ is subject to a suitable condition,
then this inner product is positive semi-definite.

If g = sl(2), then the “suitable condition” is simply the statement that λ ∈ {0, 1, . . . , k}.
[For general simple Lie algbera g, the condition is that the inner product 〈λ, αmax〉 of λ with the highest
root αmax should be at most k, where the inner product on h∗ (the dual of the Cartan subalgebra h ⊂ g) is
the dual of the basic inner product. Note that for any given k ∈ Z≥0, there are only finitely many λ’s that
satisfy that condition.]

Let Hλ,k denote the Hilbert space completion of Wλ,k/(null-vectors). 6

• Lemma The action of L̃gk on Wλ,k/(null-vectors) exponentiates to a projective unitary
action of the loop group LG on the Hilbert space Hλ,k.

Recall that LIG denotes the group of loops S1 → G whose support is contained in I .

• Lemma The von Neumann algbera generated by LIG inside B(Hλ,k) is canonically
isomorphic to the von Neumann algbera generated by LIG inside B(H0,k). The Hilbert
space Hλ,k is therefore a representation of the chiral WZW conformal net AG,k.

6The case k = 0, λ = 0 is allowed, but the resulting Hilbert space H0,0 is not very interesting: it is one
dimensional, spanned by Ω. For that reason, one usually restricts to k ∈ Z≥1.

32



We will now argue that, in the case g = sl(2), the conditions k ∈ Z≥0 and λ ∈
{0, 1, . . . , k} are necessary7 for the inner product on Wλ,k to be positive semidefinite. Let
us first introduce some useful notation. The elements

X(n) :=

(
0 zn

0 0

)
Y (n) :=

(
0 0
zn 0

)
H(n) =

(
zn 0
0 −zn

)
span Lsl(2) topologically, their commutation relations in L̃ sl(2)k are given by

[X(n), Y (m)] = H(n+m) + nk δn+m,0

[H(n), X(m)] = 2X(n+m)

[H(n), Y (m)] = −2Y (n+m)

[H(n), H(m)] = 2nk δn+m,0 (all other brackets are zero)

and the ∗-structure is given by X(n)∗ = Y (−n) and H(n)∗ = H(−n).
The operators X(n), Y (n), H(n) act as creation operators for n < 0, and as annihilation
operators for n > 0.
Exercise: Check that the above commutation relations are correct (check also the signs!).
The main observation is that there is an interesting copy of sl(2) as a sub-Lie-∗-algebra

inside L̃ sl(2)k, given by

X 7→ X(1) Y 7→ Y (−1) H 7→ H(0) + k

(such a gadget is called an “sl(2)-triple”). Let us consider the action of that sl(2)-triple
on the lowest weight vector Ψ ∈ Vλ (of weight −λ). The vector Ψ satisfies

(H(0) + k)Ψ = (k − λ)Ψ X(1)Ψ = 0.

Given the above information and the classification of unitary representations of sl(2) (on
vector spaces with positive definite inner products), the only possibility for the sl(2)-
subrepresentation generated by Ψ is:

• • • • • • X(1)Ψ = 0Y (−1)k−λ+1Ψ = 0

X(1) X(1)

Y (−1) Y (−1) Y (−1). . .

. . .

H(0)+k H(0)+k

k−λ−4

H(0)+k

k−λ−2

H(0)+k

k−λ−(k−λ)

. . .

ΨY (−1)k−λΨ

The vector Y (−1)k−λ+1Ψ is
not zero in Wλ,k (it is only a
null-vector, and gets modded
out in the passage to Hλ,k).

In particular, we see that k − λ must be in Z≥0. Given that λ was itself in Z≥0, the only
possibilities this leaves are:

k ∈ Z≥0, λ ∈ {0, 1, . . . , k}

7The proof that these conditions are also sufficient will appear much later, on page 87.
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Using the same sort of analysis with the sl(2)-triples(
X(n), Y (−n), H(0) + nk

)
,

one can get a rather detailed understanding of the Hilbert space Hλ,k. Here is how things
look like in the case of the vacuum sector (the case λ = 0).

The weight of Ω with respectH(0)+nk is nk and therefore Ω supports an sl(2)-chain
of length |nk|. There are two relevant gradings on H0,k, coming from the two commuting
actions of L0 and of H(0). The operator X(n) raises bidegree by (−n, 2), and its adjoint
Y (−n) raises bidegree by (n,−2). The vacuum Hilbert space H0,k then looks as follows.

Here, we take k = 3:

. . .

. . .

. . .

L0 grading
−1 0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30

H
(0

)
gr

ad
in

g

0

2

4

6

8

10

12

14

16

18

20

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2
Ω

X(−1)kΩ

X(−2)2kΩ

X(−3)3kΩ

Y (−1)kΩ

Y (−2)2kΩ

Y (−3)3kΩ

The shaded area is the so-called weight polytope of H0,k. It indicates those bidegrees (=
weights) whose corresponding graded pieces (= weight spaces) are non-zero.

Haag duality

Recall that if I ⊂ S1 is an interval then I ′ denotes the interior of its complement and that
if A ⊂ B(H) is a von Neumann algebra then A′ denotes its commutant. Our next goal is
the following theorem:

Theorem (Haag duality) Let (H0,Ω,A) be a Möbius covariant conformal
net and let I ⊂ S1 be an interval. Then:

A(I ′) = A(I)′
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Note that by Möbius covariance, we may assume without loss of generality that I is the
upper half of S1 and that I ′ is its lower half:

S1 I+

I−

The statement then becomes A(I−)′ = A(I+).

The above theorem is known to be true but we’ll only prove it for the chiral WZW
models. However, the proof that we’ll present can also be adapted to other models.

The easiest way to prove Haag duality uses a big result about von Neumann algebras,
due to Tomita and Takesaki. We will start by stating Tomita-Takesaki’s result in its full
generality (without proof). On page 44, we will show how this result can be used to prove
Haag duality. Later on, we will show how one can be sneaky and prove Haag duality
without needing to rely on Tomita-Takesaki’s result.

A primer on Tomita-Takesaki theory:
The basic setup of the theory is as follows:

A : a von Neumann algebra
H : a Hilbert space with an action of A
Ω ∈ H : a vector that is cyclic for both A and A′

(In our example of interest, we will take A = A(I−) and H = H0. By the Reeh-Schlieder
theorem, the vacuum vector Ω ∈ H0 is cyclic for both A(I−) and its commutant.)

Lemma If Ω ∈ H is cyclic for A′, then the map A → H : x 7→ xΩ is injective. (When
the latter condition is satisfied, one says that Ω is separating for A.)

Proof:
(xΩ = 0) ⇒ (xΩ y = 0 ∀y ∈ A′) ⇒ (x = 0),

dense in H

{

where we wrote A′ as acting on the right. �

The next step in the setup of Tomita-Takesaki theory is to consider the following densely
defined operator:

S0 : xΩ 7→ x∗Ω. (10)

By the above lemma, that operator is well defined. Namely, if a vector ξ ∈ H is of the
form xΩ, then it is so in a unique way, and so its value x∗Ω under S0 is unambiguously
defined. Let S be the closure of S0 (I’ll talk about closures of unbounded operators in the
next section—see Lemma 6 below). One then defines

∆ := S∗S and J := S∆−
1
2
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(strictly speaking, J is the closure of S∆−
1
2 ) so that

S = J∆
1
2

is the polar decomposition of S. We then have:

Theorem (Tomita-Takesaki) Under the above assumptions, and with the above nota-
tions, we have:

A′ = JAJ.

Here, the operators S and ∆ are unbounded operators. We should therefore step back
and give some basic definitions before going on too fast...

Unbounded operators on Hilbert spaces:

Definition: A (possibly) unbounded operator a : H 99K H consists of a domainDa ⊂ H
and a linear map a : Da → H . We will always assume that Da is dense in H .

An unbounded operator a : H 99K H is closed if its graph

Γa :=
{

(ξ, a(ξ))
∣∣ ξ ∈ Da}

is a closed subspace of H ⊕H .

Really, the good notion is that of a closed operator. But not all unbounded operators
come to us as closed operators. Therefore, one introduces the following definition:

An unbounded operator a : H 99K H is closeable if Γa, the closure of its graph, is the
graph of something. In other words, a is closeable if the first projection p1 : H ⊕H → H
restricts to an injective map p1 : Γa → H . Equivalently, a is closeable if

ξi → 0

a(ξi)→ η

}
⇒ η = 0

for every sequence ξi ∈ Da.

If a is a closed operator, then a subspace D0 ⊂ Da is called a core of a if a is the closure
of a|D0 . Equivalently, D0 is a core of a if it is dense in Da in the graph norm

‖ · ‖a := ‖ · ‖+ ‖a( · )‖.

(We could also have defined the graph norm to be
√
‖ · ‖2 + ‖a( · )‖2 . That’s an equivalent

norm and so it doesn’t matter which one of those two norms one uses.)

Finally, if Da ⊂ Db and a = b|Db , then we write a ⊂ b.

With the above definitions in place, we can now go back and prove a claim that was
used implicitly in our earlier discussion:
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Lemma 6 The operator S0 defined in (10) is closeable.

Proof: Assume that we have a sequence xi ∈ A with xiΩ→ 0 and x∗iΩ→ η. We need to
show that η = 0. It is enough to show that 〈ξ, η〉 = 0 for every ξ ∈ H . Actually, since Ω
is cyclic for A′, it is enough to show 〈ξ, η〉 = 0 for every ξ of form Ωy with y ∈ A′ (once
again, we write the action of A′ on the right). And indeed:

〈Ωy, η〉 = 〈Ωy, limx∗iΩ〉 = lim〈Ωy, x∗iΩ〉 = lim〈xiΩy,Ω〉 = 〈limxiΩ︸ ︷︷ ︸
=0

y,Ω〉 = 0

�

Note that bounded operators are a special case of closed operators:

Exercise: Show that a densely defined operator a : H 99K H satisfies supξ 6=0
‖aξ‖
‖ξ‖ < ∞

if and only if Γa is the graph of a continuous everywhere defined map.

Definition: The adjoint of an unbounded operator a : H 99K H is given by...
Let’s slow down and first think a bit about what we want:

〈aξ, η〉 = 〈ξ, a∗η〉
We expect this to be
not always defined...

{ (11)

...so we should first start by describing the domain of a∗:

Da∗ :=
{
η ∈ H

∣∣∣ Da → C
ξ 7→ 〈aξ, η〉 is bounded

}
(Indeed, if (11) is to hold, then the map ξ 7→ 〈aξ, η〉 should definitely be bounded.) Given
η ∈ Da∗ , one then defines a∗η to be the unique vector for which (11) holds.

Note: If a is an antilinear operator, then (11) should be replaced by 〈aξ, η〉 = 〈a∗η, ξ〉.
Adjoints actually make sense for any real linear maps (and they recover the usual no-
tion of adjoint in the case of a C-linear or C-antilinear operator). To define them, just
replace equation (11) by the corresponding formula involving only R-valued inner prod-
ucts: <e〈aξ, η〉 = <e〈ξ, a∗η〉.

The graph of a∗ can also be described directly in terms of the graph of a:

Γa∗ =
{

(η, “a∗η”) ∈ H ⊕H
∣∣ 〈aξ, η〉 = 〈ξ, “a∗η”〉 ∀(ξ, aξ) ∈ Γa

}
(12)

Here, we put quotes around a∗η to remind ourselves that the correct thing to write should
have been {(η,X) ∈ H⊕H | 〈aξ, η〉 = 〈ξ,X〉 ∀(ξ, aξ) ∈ Γa}. An alternative description
of Γa∗ which is easily seen to be equivalent to (12) is given by:

Γa∗ =

(
0 1H
−1H 0

)
Γ⊥a .
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From this last characterization, it follows that a∗ is always closed, and that a∗∗ is the
closure of a.

Note: In our definition of unbounded operator, we could have dropped the condition that
Da be dense in H , and used (12) to define a∗. In that case, we would have

(Da is dense)⇔ (a∗ is single-valued).

By replacing a by a∗ in the above equivalence and using that a∗∗ is the closure of a, we
then get:

(a is closeable)⇔ (Da∗ is dense).

Definition: An unbounded operator a : H 99K H is called self-adjoint if a = a∗.

Note that this is much stronger than simply asking

〈aξ, η〉 = 〈ξ, aη〉 ∀ a ∈ Da.

The latter only implies (and is actually equivalent to) a ⊂ a∗, but it does not entail Da =
Da∗ even if a is closed.

Example: Let X be a measure space and let H := L2(X) be the Hilbert space of square
integrable functions on X . Then for every measurable function f : X → R, we have the
multiplication operator

mf : L2(X) 99K L2(X) : ξ 7→ fξ

with domain Dmf := {ξ ∈ L2(X) | fξ ∈ L2(X)}.
Aside: my preferred way of stating the spectral theorem is to say that every self-adjoint

operator is unitarily equivalent to one of the above form.

Lemma Let a : H 99K H be a closed operator. Then a∗a with domain

Da∗a := {ξ ∈ Da | aξ ∈ Da∗}

is self-adjoint (and in particular closed). Moreover, Da∗a is a core of a.
Furthermore, we have D√a∗a = Da.

For a proof, see for example Proposition 3.18 and Lemma 7.1 in Konrad Schmüdgen’s
book Unbounded self-adjoint operators on Hilbert space.

We now turn to the subject of the polar decomposition of a closed operator a : H 99K H .
Let us assume for simplicity that ker(a) = 0 and that im(a) is dense.
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Claim: Any such operator can be written uniquely as

a = up

with u unitary and p positive (note: the requirement that Da = Dp is implicit in the
statement a = up).

Given a, let us first define p :=
√
a∗a (clearly, if we want a = up to hold, then p has to be

equal to
√
a∗a). Now, one might be tempted to write u := ap−1, but that is not quite right

because ap−1 is not everywhere defined. Instead, we first define

u0 := ap−1 : im(p)
p−1

−−→ Dp = Da
a−→ H.

That operator is a densely defined because im(p)⊥ = ker(p) = ker(a) = 0, and is well
defined (i.e. single-valued) because ker(p) = 0. Moreover, its range is dense in H by our
assumption on a. We then define u to be the closure of u0. The fact that u0 is closeable
and that its closure is unitary is the content of the following lemma:

Lemma The map u0 : pξ 7→ aξ is isometric.

Proof: For any ξ ∈ Da∗a and η ∈ Da = Dp, we have

〈aξ, aη〉 = 〈a∗aξ, η〉 = 〈p2ξ, η〉 = 〈pξ, pη〉.

In particular, ‖aξ‖ = ‖pξ‖ for every ξ ∈ Da∗a.
By the previous lemma, Da∗a = Dp2 is a core of p. For every ξ ∈ Dp, we may

therefore pick a sequence ξi ∈ Da∗a that converges to ξ in the graph norm ‖ · ‖p. By the
above computation, the two graph norms ‖ · ‖a and ‖ · ‖p agree onDa∗a. The sequence ξi
is therefore also Cauchy for ‖ · ‖a (with necessarily the same limit ξ since every ‖·‖a-limit
is also a ‖ · ‖-limit). We then have ‖aξ‖ = lim ‖aξi‖ = lim ‖pξi‖ = ‖pξ‖. �

Note: The polar decomposition of antilinear operators works in exactly the same way as
the one for linear operators. The only difference is that u is then antiunitary instead of
unitary.

We now go back to the proof of Haag duality: A(I−)′ = A(I+).

Our strategy will be to apply Tomita-Takesaki’s theorem to the algebra A(I−) with re-
spect to the vacuum vector Ω ∈ H0. We will compute the polar decomposition S = J∆

1
2

by the method of ‘lucky guess’ and then observe that JA(I−)J = A(I+).

We will need the following elements of Möb(S1)

vt : 1−1 ϑ : 1−1
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and the corresponding operators on H0

Vt : H0 → H0 Θ : H0 → H0.

Here, {vt}t∈R is the unique one-parameter subgroup of Möb(S1) that fixes the points
{1,−1}, normalized so that the derivative at −1 of vt is et. The map ϑ also fixes {1,−1},
and satisfies ϑ2 = 1.

The homomorphism R → Möb(S1) : t 7→ vt can be analytically continued to a
homomorphism C → Aut(CP1) : z 7→ vz, which again fixes the points {−1, 1}. For
example, the map viπ exchanges I− and I+:

viπ : 1−1

Let L be the infinitesimal generator of {Vt}, so that Vt = eitL for t ∈ R, and let us define
Vz for z ∈ C by

Vz := eizL : H0 99K H0.

A vector ξ is in the domain of Vz if and only if the map R→ H0 : t 7→ eitLξ analytically
continues to the strip {ζ ∈ C | 0 ≤ =m(ζ) ≤ =m(z)}. More precisely, the extension
should be analytic for 0 < =m(ζ) < =m(z) and continuous for 0 ≤ =m(ζ) ≤ =m(z)
(reverse all inequalities if =m(z) is negative). To see that, use the spectral theorem and
the explicit description of domains of multiplication operators given two pages above.

Proposition 1 We have ΘViπaΩ = a∗Ω for every a ∈ A(I−). Equivalently,

ViπaΩ = Θa∗Ω. (13)

(Implicitly, we are also making the claim that aΩ ∈ DViπ .)

We will only present the proof of the above proposition for the case of the chiral WZW
models, but our proof generalizes to other models too.

Proof: In order to attack the problem, we first need to understand the action of Viπ on H0.

Claim 1: if fi : S1 → g is supported in I− and if fi|I− analytically continues to
a function Fi(z) defined for |z| ≥ 1, including ∞, smooth on the boundary, then the
function

t 7→ Vt f1 . . . fnΩ = (f1 ◦ v−t) . . . (fn ◦ v−t)Ω for t ∈ R
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analytically continues to

z 7→ (F1 ◦ v−z)|I− . . . (Fn ◦ v−z)|I−Ω

for z ∈ C with imaginary part between 0 and π (analytic on the interior of the strip and
continuous on the closed strip). It follows that f1 . . . fnΩ is in the domain of Vz and that

Vz f1 . . . fnΩ = (F1 ◦ v−z)|I− . . . (Fn ◦ v−z)|I−Ω.

technicalstuff→

Proof: Recall from (9) that f1 . . . fnΩ depends continuously on f1, . . . , fn in the C∞
topology. If now fi = f

(z)
i depends holomorphically on some parameter z ∈ C, then the

map z 7→ f
(z)
1 . . . f

(z)
n Ω is complex differentiable:

lim
h→0

f
(z+h)
1 . . . f

(z+h)
n Ω− f (z)

1 . . . f
(z)
n Ω

h

= lim
h→0

n∑
i=1

f
(z+h)
1 . . . f

(z+h)
i−1

(f (z+h)
i −f (z)

i

h

)
f

(z)
i+1 . . . f

(z)
n Ω

=
n∑
i=1

f
(z)
1 . . . f

(z)
i−1( d

dz
f

(z)
i )f

(z)
i+1 . . . f

(z)
n Ω.

Here, the last equality holds because the function h 7→ f
(z+h)
i −f (z)

i

h
admits a continuous

extension to h = 0.
Since (Fi ◦ v−z)|I− depends holomorphically on z, the above argument applies. The

vector (F1 ◦ v−z)|I− . . . (Fn ◦ v−z)|I−Ω depends holomorphically on z for z ∈ C with
imaginary part between 0 and π (analytic on the interior of the strip and continuous on
the closed strip). �

Claim 2: Let D0 be the linear span of vectors of the form f1 . . . fnΩ with supp(fi) ⊂
I− and with the property that fi|I− that analytically continues to |z| ≥ 1, including ∞.
Then D0 is dense in H0.

Proof: We first show that if supp(fi) ⊂ I−, then f1 . . . fnΩ is in the closure of D0.
For every function fi, define the ‘convolution’

fNi := N√
2π

∫
t∈R

e−
(Nt)2

2 · fi ◦ v−t.

Then limN f
N
i = fi in the C∞ topology and so limN f

N
1 . . . fNn Ω = f1 . . . fnΩ by (9).

Moreover, each fNi extends to an analytic function

FN
i (z) := N√

2π

∫
R+α(z)

e−
(Nt)2

2 · fi(v−t(z)) dt,

where α(z) is chosen so that t 7→ v−t(z) maps α(z) to some fixed point in I− (say−i), and
thus maps R + α(z) to the whole of I−. To finish the proof, we need to argue that vectors
of the form f1 . . . fnΩ with supp(fi) ⊂ I− are dense in H0. This is very similar to the
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statement of the Reeh-Schlieder theorem, and the proof that we presented in pages 16–20
applies word for word. �

Given f1, . . . , fn ∈ C∞(S1, g) with support in I− and analytic continuations F1, . . . , Fn
as above, we define

gi := (Fi ◦ v−iπ)|I− hi := (Fi ◦ v−iπ)|I+
so that

Viπ f1 . . . fnΩ = g1 . . . gnΩ Θ f1 . . . fnΩ = (−1)nh∗1 . . . h
∗
nΩ.

(The action of Möb(S1) on vectors f1 . . . fnΩ was described on page 27.)
Recall that we are trying to prove equation (13). By Claim 2, it is enough to test it

against vectors of the form f1 . . . fnΩ, with fi with support in I− and analytic continua-
tions as above. Ignoring for the moment the question of whether aΩ is in the domain of
Viπ, we have to show that〈

Viπ aΩ, f1 . . . fnΩ
〉

=
〈
Θ a∗Ω, f1 . . . fnΩ

〉
(14)

for all a ∈ A(I−). Recall that both Viπ and Θ are self-adjoint (and Θ is antilinear). We
can then compute:

〈ViπaΩ, f1 . . . fnΩ〉 = 〈aΩ, Viπ f1 . . . fnΩ〉 = 〈aΩ, g1 . . . gnΩ〉

and

〈Θa∗Ω, f1 . . . fnΩ〉 = 〈Θf1 . . . fnΩ, a∗Ω〉
= 〈(−1)nh∗1 . . . h

∗
nΩ, a∗Ω〉

= 〈Ω, (−1)nhn . . . h1a
∗Ω〉

I’m not allowed to write this be-
cause I don’t know whether a∗Ω is
in the domain of hn . . . h1. So I’ll
need to find another more round-
about way of going from 1 to 2 .

1

2
= 〈Ω, (−1)na∗hn . . . h1Ω〉 = 〈aΩ, (−1)nhn . . . h1Ω〉.

We now address the technical problem raised above. We assume WLOG that the hi are
skew adjoint (otherwise, write hi = 1

2
[(hi − h∗i )− i((ihi)− (ihi)

∗)] and use linearity) so
that they exponentiate to elements in A(I+). Since A(I+) and A(I−) commute, we have:〈

h∗1 . . . h
∗
nΩ,a∗Ω

〉
=
〈
( d
dt1

∣∣
t1=0

et1h
∗
1) . . . ( d

dtn

∣∣
tn=0

etnh
∗
1) Ω, a∗Ω

〉
= dn

dt1...dtn

∣∣
~t=0

〈
(et1h

∗
1) . . . (etnh

∗
n) Ω, a∗Ω

〉
= dn

dt1...dtn

∣∣
~t=0

〈
aΩ, (etnhn) . . . (et1h1) Ω

〉
=
〈
aΩ, ( d

dtn

∣∣
tn=0

etnhn) . . . ( d
dt1

∣∣
t1=0

et1h1) Ω
〉

=
〈
aΩ, hn . . . h1Ω

〉
.

Note: For this argument to work, we need to know that Ω is a smooth vector for the action
of the appropriate central extension L̃Gk of LG (that is, the map L̃Gk → H0 : γ 7→ uγΩ

is smooth, at least when restricted to finite dimensional submanifolds of L̃Gk).
To finish the argument, we need to check that g1 . . . gnΩ = (−1)nhn . . . h1Ω. Since

gi + hi admits a holomorphic extension to the unit disc (namely Fi ◦ v−iπ), it annihilates
the vacuum vector:

giΩ + hiΩ = 0.
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Moreover, gi and hj commute in L̃gk because they have disjoint supports. So we get:

g1 . . . gnΩ = −g1 . . . gn−1hnΩ

= −hng1 . . . gn−1Ω

= hng1 . . . gn−2hn−1Ω

= hnhn−1g1 . . . gn−2Ω

= −hnhn−1g1 . . . gn−3hn−2Ω

= −hnhn−1hn−2g1 . . . gn−3Ω

= hnhn−1hn−2g1 . . . gn−4hn−3Ω

= hn . . . hn−3g1 . . . gn−4Ω = . . . = (−1)nhn . . . h1Ω.

This finishes the proof of Proposition 1 modulo the claim that aΩ is in the domain of Viπ.

Now let us now return to the question of whether aΩ is in the domain of Viπ. If you
look carefully at the above computation, you’ll see that the only thing I’ve really shown
is

〈aΩ, Viπ f1 . . . fnΩ〉 = 〈Θa∗Ω, f1 . . . fnΩ〉 (15)

because I haven’t yet argued that the left hand side of (14) is well defined. However, we
can already see from (15) that the map f1 . . . fnΩ 7→ 〈aΩ, Viπ f1 . . . fnΩ〉 is bounded on

D0 = Span
{
f1 . . . fnΩ

∣∣ supp(fi) ⊂ I−, fi|I− analytically continues to |z| ≥ 1
}
. (16)

If we new that D0 is a core of Viπ, then we’d be able to conclude that aΩ ∈ DV ∗iπ = DViπ .

The following general result will help us finish the argument:

((?)) Proposition Let a be a self-adjoint operator. If D0 ⊂ Da is dense and invariant
under {eita}t∈R, then D0 is a core of a.

Proof: Given ξ ∈ Da, we need to show that it is in the ‖ ‖a-closure of D0. We begin with
two observations:

(1) Given η ∈ Da, the map t 7→ eitaη is ‖ ‖a-continuous.
Indeed both t 7→ eitaη and t 7→ a(eitaη) = eita(aη) are ‖ ‖-continuous.

(2) If η ∈ D0, then
∫ T

0
eitaη is in the ‖ ‖a-closure of D0.

Indeed, the integral of a continuous function can be approximated by Riemann sums,
each one of which is in D0 by our assumption eitaD0 = D0 (where both ‘continuous’ and
‘approximated’ are with respect to ‖ ‖a).

Now, given ξ ∈ Da, we may pick ηn ∈ D0 such that ηn
‖ ‖→ ξ. We then have:

1
T

∫ T

0

eitaηn dt
‖ ‖a−−−−→
n→∞

1
T

∫ T

0

eitaξ dt
‖ ‖a−−−−→
T→0

ξ

Uses a
( ∫ T

0
eitaη

)
dt =

∫ T
0
aeitaη dt =

−ieitaη
∣∣T
0

and our assumption ηn
‖ ‖→ ξ.

Because t 7→ eitaη

is ‖ ‖a-continuous.
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Therefore ξ is in the ‖ ‖a-closure of D0. �

The domain D0 defined in (16) is invariant under the action of {Vt}t∈R. By ((?)), it is
therefore a core for Viπ. From (15), we then get:

Corollary: For every a ∈ A(I−), the vector aΩ is in the domain of Viπ and equation (14)
holds: 〈

Viπ aΩ, ξ
〉

=
〈
Θ a∗Ω, ξ

〉
, ∀ ξ ∈ D0.

Since D0 is dense in H , we can then conclude that Viπ aΩ = Θ a∗Ω, equivalently:

ΘViπaΩ = a∗Ω (17)

This finishes the proof of Proposition 1. �

At this point, we should admit that (17) was really the wrong thing to ask. What we
really want to know is S = ΘViπ, whereas the above equation only gives us S ⊂ ΘViπ.
Once again, Proposition ((?)) comes to our rescue:

Theorem Let S be the closure of S0 : aΩ 7→ a∗Ω with domain DS0 := A(I−)Ω. Then:

S = ΘViπ is the polar decomposition of S

Proof: The domain A(I−)Ω on which we have checked (17) is invariant under the action
of {Vt}t∈R. By ((?)), it is a core for Viπ, and therefore also a core for ΘViπ. We’ve checked
that the operators S and ΘViπ agree on a common core. They are therefore equal. �

At this point, we could get Haag duality by simply quoting the result of Tomita-
Takesaki theory, according to which A′ = JAJ :

A(I−)′ = ΘA(I−)Θ = A(I+).

By Tomita-Takesaki theory By Möbius covariance

However, this would be philosophically unsatisfactory, as both Haag duality and the
Tomita-Takesaki result are of the form:

“Under such and such assumptions, these two algebras are each other’s commutants”

Let’s step back and think about the general setup of Tomita-Takesaki theory.

It turns out that the operator S can be entirely described in terms of the real subspace

K := closure of
{
aΩ
∣∣ a ∈ A, a = a∗

}
Note that K ∩ iK = {0}. Indeed, ξ ∈ K ∩ iK means that ξ is both of the form aΩ and of
the form ibΩ, for self-adjoint elements a and b. Since Ω is separating, this implies a = ib,
which can only happen if a = b = 0.
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Lemma The operator with domain K + iK given by (the linear extension of){
+1 on K
−1 on iK

is S.

Proof: The graph Γ :=
{

(ξ, ξ) + (η,−η) | ξ ∈ K, η ∈ iK
}

of that operator is the
orthogonal direct sum of {(ξ, ξ) | ξ ∈ K} and of {(η,−η) | η ∈ iK}. Both of them being
closed, so is Γ (unlike K + iK, which is typically not closed).

If K0 is a dense subspace of K, then

Γ0 :=
{

(ξ, ξ) + (η,−η) | ξ ∈ K0, η ∈ iK0

}
is dense in Γ. Therefore Γ is the closure of Γ0. To finish the argument, note that if we let
K0 := {aΩ | a ∈ A, a=a∗}, then Γ0 is exactly the graph of S0. �

Let e denote that orthogonal projection onto K (the operator e is only R-linear!). Our
Hilbert space then becomes a representation of the real ∗-algebra

K :=
〈
e, i
∣∣ e2 = e∗ = e, i2 = −1, i∗ = −i

〉
Since S is entirely determined by K and i, it is entirely determined by H as a representa-
tion of K. Now a miracle happens:

The algebra K has a very simple representation theory!

Lemma The element z := (e+ iei)2 = e+ ieie+eiei− iei is self-adjoint and contained
in the center of K.

Proof: direct computation. �

Lemma In any representation on a Hilbert space, the spectrum of z is contained in [0, 1].

Proof: Let K := eH and let f := −iei be the orthogonal projection onto iK. Then:
Spec(e+ (1− f)) ⊂ [0, 2] ⇒ Spec(e− f) ⊂ [−1, 1] ⇒ Spec(e− f)2 ⊂ [0, 1]. �

By the above results, we can desintegrate any representation of K on a Hilbert space
according to the action of z:

H =

∫ ⊕
λ∈[0,1]

Hλ.

(Given a bundle Hilbert spaces {Hλ}λ∈X parametrized by some measure space X , the
direct integral

∫ ⊕
λ∈X Hλ is the space of L2 sections of that bundle.) Each fiber Hλ then

carries an action of

Kλ :=
〈
e, i
∣∣ e2 = e∗ = e, i2 = −1, i∗ = −i, (e+ iei)2 = λ

〉
.
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Lemma The algebra Kλ is spanned by the elements {1, e, i, ei, ie, eie, iei, eiei}.
In particular, dimR(Kλ) ≤ 8.

Proof: Any word in the letters e and i that is not in the above list can be simplified using
the rules ee = e, ii = −1 and ieie = λ− e− eiei+ iei. �

We now analyze a couple special things that happen when λ = 0 or 1.

Lemma (1) In any representation ofK0 on a Hilbert space, the extra relation e+iei = 0
holds. The quotient algebra K̃0 := K0/(e + iei = 0) is spanned by {1, e, i, ei} and is
therefore at most four dimensional.

(2) In any representation ofK1 on a Hilbert space, the extra relation 1+iei = e holds.
The quotient algebra K̃1 := K1/(1 + iei = e) is spanned by {1, e, i, ei} and is therefore
at most four dimensional.

Proof: (1) On a Hilbert space, (e + iei)2 = 0 implies e + iei = 0 because that element
is self-adjoint. Given that relation, we can then rewrite ie = −ieii = ei, eie = eei = ei,
and so on.

(2) 1−(e+iei)2 = (1+iei−e)2. On a Hilbert space, because 1+iei−e is self-adjoint,
the relation (e+ iei)2 = 1 therefore implies 1 + iei− e = 0. Given that relation, we can
then rewrite ie = −ieii = (1− e)i = i− ei, eie = e(i− ei) = 0, etc. �

Lemma Let θ ∈ [0, π
4
] be the unique solution of the equation λ = 4 cos2(θ) sin2(θ), and

let us abbreviate c := cos(θ) and s := sin(θ). Then the representation Kλ → M2(C)
given by

e 7→
(
c2 cs
cs s2

)
i 7→

(
i 0
0 −i

)
induces an isomorphism Kλ ∼= M2(C) for 0 < λ < 1 .

For λ = 0 or 1, that representation descends to a faithful representation of K̃0 or K̃1.
The image is ∼= C⊕ C for λ = 0, and ∼= M2(R) for λ = 1.

Proof: If 0 < λ < 1, we have 0 < θ < π
4
, and the matrices

1 =

(
1 0
0 1

)
, e =

(
c2 cs
cs s2

)
, iei =

(
−c2 cs
cs −s2

)
,

and eiei =

(
−c4 + c2s2 c3s− cs3

−c3s+ cs3 c2s2 − s4

)
= (c2 − s2)

(
−c2 cs
−cs s2

)
are easily seen to span all reall two-by-two matrices. Similarly, by multiplying the above
matrices by ( i 0

0 −i ) on the right, we see that the elements i, ei, ie and eie span all two-
by-two matrices with purely imaginary entires. It follows that dimR(Kλ) ≥ 8. Combined
with the previous lemma, we conclude that dimR(Kλ) = 8 and that the above representa-
tion is an isomorphism.

If λ = 0, the image of that representation is {( z 0
0 w ) | z, w ∈ C}, which is isomorphic

to C ⊕ C. If λ = 1, the image is {( z w
w̄ z̄ ) | z, w ∈ C} and is equal to the image of M2(R)
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under the map ( a bc d ) 7→ ( 1 i
i 1 )( a bc d )( 1 i

i 1 )−1.
The existence of those representations implies dimR(K̃0) ≥ 4 and dimR(K̃1) ≥ 4.

Combined with the result of the previous lemma, we conclude that dimR(K̃0) = dimR(K̃1)
= 4. �

The upshot of the above lemmas is that the irreducible representations of K are very
easy to understand. Generically they are four real dimensional, and in some limit cases
they can also be two dimensional.

This is what a generic irrep of K looks like:

e1

e2

θ ⊕ ie1

ie2

K

θ

(i is indicated on the basis vectors, and e is the orthogonal projection onto the 2-dimensional
subspace K).

In the non-generic cases (i.e., when θ equals 0 or π
4
), those representations are no

longer irreducible: they split as a direct sums of two 2-dimensional irreps. The above
picture therefore contains all the information about the irreps of K, including the special
boundary cases λ = 0, 1 (i.e., θ = 0, π

4
).

Equipped with the above complete understanding of the representation theory of K,
we can now get some results. Recall that S is the closure of the operator aΩ 7→ a∗Ω, and
that it can also be described as

{
+1 on K
−1 on iK . Recall also that ∆ := S∗S and that J is the

closure of S∆−
1
2 , so that S = J∆

1
2 is the polar decomposition of S.

Our Hilbert space H decomposes as a direct integral of the above representations.
Note that because Ω is cyclic and separating, we have (K + iK)⊥ = K ∩ iK = 0, so the
2-dimensional irreps that correspond to λ = 0 cannot occur as direct summands of H .

Lemma J(iK⊥) = K.

Proof: Our Hilbert space decomposes as a
∫ ⊕ of copies of ⊕ or direct sum-

mands thereof in the boundary case λ = 1 (recall that the case λ = 0 cannot occur here).
It is therefore enough to show that the relation J(iK⊥) = K holds in every such repre-
sentation.

Geometrically, the operator S looks as follows:
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θ
θ ⊕

iK

K

θ
θ S ,

which translates algebraically into:

S =

(
0 cot(θ)

tan(θ) 0

)
⊕
(

0 − cot(θ)
− tan(θ) 0

)
.

It is then easy to compute

J : = S(S∗S)−
1
2

=
(

0 cot(θ)
tan(θ) 0

)(
tan2(θ) 0

0 cot2(θ)

)− 1
2

⊕
(

0 − cot(θ)
− tan(θ) 0

)(
tan2(θ) 0

0 cot2(θ)

)− 1
2

=

(
0 1
1 0

)
⊕
(

0 −1
−1 0

)
.

Putting this all together, it is now a simple geometric exercise to check that the relation
J(iK⊥) = K holds:

θ
θ

θ

⊕

iK

iK⊥

K

θ
θ

θ

J

�

Lemma If ξ, η ∈ iK⊥, then 〈Jξ, η〉 ∈ R.

Proof: By the previous lemma, Jξ sits in K and is therefore orthogonal to iη. We then
have <e〈Jξ, iη〉 = 0 ⇒ 〈Jξ, iη〉 ∈ iR ⇒ 〈Jξ, η〉 ∈ R. �

Recall that A is our von Neumann algebra and that it acts on a Hilbert space H with
cyclic and separating vector Ω ∈ H .

Lemma If x ∈ A′ is self-adjoint, then xΩ ∈ iK⊥.
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Proof: Let x be as above. If a ∈ A is self-adjoint, then 〈aΩ, xΩ〉 = 〈xΩ, aΩ〉 and so
=m〈xΩ, aΩ〉 = 0. It follows that <e〈xΩ, iaΩ〉 = 0 and so xΩ is orthogonal to iaΩ. This
being true for every a, we have shown that xΩ ∈ iK⊥. �

Theorem (Haag duality) In our case of interest
(namely, the case A = A(I−), J = Θ, JAJ = A(I+)),

we have A′ = JAJ .

Proof: The crucial extra piece of information that we have due to the specifics of our
situation is the relation JAJ ⊆ A′ (that’s the locality axiom of our conformal net).

If x, y ∈ A′ are self-adjoint, then by the last two lemmas, we have

〈JxΩ, yΩ〉 = 〈yΩ, JxΩ〉.

Using JΩ = Ω and J∗ = J , we can rewrite this as

〈yJxJΩ,Ω〉 = 〈JxJyΩ,Ω〉. (18)

By linearity in y and antilinearity in x, equation (18) then holds for every x and y in A′.
One way to think of that last equation is as saying that “y and JxJ commute as far as Ω
can see”. We’d like to know that y and JxJ actually commute. Since Ω is cyclic for A, it
is enough to check

〈yJxJaΩ, bΩ〉 ?
= 〈JxJyaΩ, bΩ〉

for every a, b ∈ A. Let us rewrite that last equation in the following way:

〈yJ(JbJxJaJ)JΩ,Ω〉 ?
= 〈J(JbJxJaJ)JyΩ,Ω〉. (19)

As pointed out at the beginning of the proof, we do know that JaJ and JbJ are in A′.
Therefore so is JbJxJaJ , and equation (19) is a special case of (18). Conclusion:

yJxJ = JxJy.

The latter holds for every y ∈ A′, and so we have shown that JxJ ∈ A′′ = A. It follows
that JA′J ⊆ A. In other words, we have proven that the inclusion A′ ⊆ JAJ holds. �

The Free Fermion

In this section we will construct a certain conformal net called the Majorana Free Fermion.
There are actually two chiral CFT s that go by the name Free Fermion: the ‘Majorana
Free Fermion’ and the ‘Dirac Free Fermion’ (warning: there are also some full CFT s
that go by the same names), related by:

(Dirac Free Fermion) = (Majorana Free Fermion)⊗2.
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Actually, the Majorana Free Fermion is not a conformal net in the sense we intro-
duced so far. It’s a super-conformal net, that is, it’s a conformal net where everything is
Z/2-graded and where some of the axioms are modified. In order to set up the Majorana
Free Fermion (or any other super-conformal net), we’ll need one more piece of structure
on our standard circle: a spinor bundle.

The spinor bundle is a complex line bundle S over the unit disc D, equipped with an
isomorphism between its tensor square S⊗2 and the cotangent bundle T ∗D (the isomor-
phism is part of the data). As a bundle, T ∗D is just the trivial bundle, S is also trivial,
and the isomorphism S⊗2 ∼= T ∗D is also trivial. Only later will we see the real meaning
of introducing the spinor bundle, when we’ll want to consider the action of the Möbius
group or when we’ll want to extend it to CP1.

For the moment, we’ll just write f(z)
√
dz for sections of S, where “√dz ” is formal

symbol. Under the isomorphism S⊗2 ∼= T ∗D, the tensor product
(
f(z)

√
dz
)
⊗

(
g(z)

√
dz
)

goes to the 1-form f(z)g(z)dz.

The CAR algebra. Let Γ(S) := Γ(S1,S) denote the space of sections of S over S1.
For our purposes, it doesn’t matter what kind of sections one takes (we could take C∞
sections, or C0 sections, or L2 sections; let’s say that we take C0 sections).

Definition: The algebra CAR(S1) of Canonical Anticommutation Relations is given by:

Generators:
There is one generator c(f) for every section f ∈ Γ(S)
and the symbol c(f) depends linearly on f , namely,
c(f + g) = c(f) + c(g) and c(λf) = λc(f) for λ ∈ C.

Relations:

For any sections f, g ∈ Γ(S), we have:

[c(f), c(g)]+ =
1

2πi

∫
S1

fg

where [ , ]+ is the anticommutator [A,B]+ := AB+BA.
Here, fg is viewed as a 1-form via the isomorphism
S⊗2 ∼= T ∗D.

∗-structure:

If we let f 7→ f̄ be the antilinear involution on Γ(S)
given by zn√dz := z−n−1√

dz, then we set c(f)∗ := c(f̄)
Exercise: Check that the ∗-structure is compatible with
the relations: [c(g)∗, c(f)∗]+ = ( 1

2πi

∫
S1 fg)∗.

The way to remember the formula for f 7→ f̄ is to view √
dz as some kind of substitute for

z
1
2 . The formula zn√dz 7→ z−n−1√

dz then becomes zn+ 1
2 7→ z−(n+ 1

2
), which agrees with

our intuition about bar.
The operation f 7→ f̄ on sections of S also admits a geometric description:

Lemma The sections f ∈ Γ(S) that satisfy f̄ = f are those whose square pairs posi-
tively with every normal outgoing vectors field; the sections f ∈ Γ(S) that satisfy f̄ = −f
are those whose square pairs positively to every normal ingoing vectors field:
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f̄ = f ⇔ f 2
(

v
that’s a 1-form under the
isomorphism S⊗2 ∼= T ∗. that’s a function on S1

)
≥ 0 ∀ v normal outgoing

f̄ = −f ⇔ f 2
(

v

)
≥ 0 ∀ v normal ingoing

Proof: The condition of pairing positively with normal outgoing vectors defines a ray
bundle (a ray is half of a line) inside T ∗D|S1 . Its preimage under the squaring map
f 7→ f 2 : S → T ∗D is a real line bundle S+ ⊂ S. Similarly, the condition of pairing
positively with normal ingoing vectors defines a ray bundle inside T ∗D|S1 (the negative
of the previous ray bundle) whose preimage under the squaring map is a real line bundle
S− ⊂ S. Since (S−)2 = −(S+)2, we have S− = iS+, and in particular S = S+ ⊕ S−.

Now, zn√dz + z−n−1√
dz and izn√dz − iz−n−1√

dz form a basis of {f ∈ Γ(S) | f̄ = f}.
Any normal outgoing vector field is of the form g(z)z ∂z with g an R+-valued function,
so we can check:(

zn
√
dz + z−n−1√

dz
)2(

g(z)z ∂z
)

= g(z)(z2n+1 + 2 + z−(2n+1)) = g(z)|1 + z2n+1|2 ≥ 0(
izn
√
dz − iz−n−1√

dz
)2(

g(z)z ∂z
)

= g(z)(−z2n+1 + 2− z−(2n+1)) = g(z)|1− z2n+1|2 ≥ 0.

It follows that {f̄ = f} ⊆ Γ(S+).
Similarly, izn√dz + iz−n−1√

dz and zn√dz − z−n−1√
dz form a basis of {f ∈ Γ(S) |

f̄ = −f} and we have(
izn
√
dz + iz−n−1√

dz
)2

(−g(z)z ∂z) = g(z)|1 + z2n+1|2 ≥ 0(
zn
√
dz − z−n−1√

dz
)2

(−g(z)z ∂z) = g(z)|1− z2n+1|2 ≥ 0.

It follows that {f̄ = −f} ⊆ Γ(S−).
Finally, since Γ(S) can be written as both {f̄ = f} ⊕ {f̄ = −f} and Γ(S+)⊕ Γ(S−),

we must have {f̄ = f} = Γ(S+) and {f̄ = −f} = Γ(S−). �

Let Γ>0(S) denote the space of section of S over S1 that extend to holomorphic sections
over D. It is the subspace spanned by zn√dz for n ≥ 0. Here, we write Γ>0(S) instead of
Γ≥0(S) because we think of √dz as having degree 1/2.

Lemma If f and g are in Γ>0(S), then 1
2πi

∫
S1 fg = 0.

Proof: The 1-form fg on S1 extends to a holomorphic 1-form on D, and its integral along
S1 = ∂D is then zero by Cauchy’s theorem. �

The CAR algebra therefore contains the exterior algebra
∧• Γ>0(S) as a subalgebra. Let

C be the trivial module of
∧• Γ>0(S) (where all the generators act as zero), and let Ω

denote its standard basis element (i.e., the element 1 ∈ C). We then consider the induced
module

IndCARV
Γ>0

C := Ind
CAR(S1)V•

Γ>0(S)
C = CAR(S1)⊗V• Γ>0(S) C.
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Lemma The module IndCARV
Γ>0

C is spanned by c(f1)c(f2) . . . c(fn)Ω with fi ∈ Γ<0(S).

Proof: Identical to the proof of the lemma on page 28. �

Let Γ<0(S) := Span{zn√dz |n < 0} be the orthogonal complement of Γ>0(S) with
respect to the inner product 〈f, g〉 := 1

2πi

∫
S1
fḡ on Γ(S). The subspace Γ<0(S) is most

conveniently describing by means of the spinor bundle over CP1 (which we’ll again call
S). The latter is the line bundle over CP1 defined by declaring its sections over some open
U ⊂ CP1 to be expressions of the form f(z)

√
dz, where f is a function over U \ {∞}

subject to the condition that if∞ ∈ U then limz→∞ z f(z) should exist. This bundle goes
by the name O(−1) in algebraic geometry. As before, the isomorphism S⊗2 ∼= T ∗CP1

sends (f(z)
√
dz)(g(z)

√
dz) to f(z)g(z)dz.

To verify that the above map is indeed an isomorphism, we need to check that a 1-form
f(z)dz extends over∞ ∈ CP1 iff the limit limz→∞ z

2 f(z) exists. Exercise: Verify that
a 1-form f(z)dz defined on C extends over∞ ∈ CP1 iff the limit limz→∞ z

2 f(z) exists.
Hint: Define r(z) := z−1 and check whether r∗(f(z)dz) extends to 0.

With the above preliminaries in place, we can now describe Γ<0(S) geometrically.
The elements of Γ<0(S) are the sections of S over S1 that extend to holomorphic section
over D′ := {z ∈ C | z ≥ 1} ∪ {∞} ⊂ CP1.

Lemma If f and g are in Γ<0(S), then 1
2πi

∫
S1 fg = 0.

Proof: If f and g extend to holomorphic sections over D′, then so does the 1-form fg. Its
contour integral is therefore zero by Cauchy’s theorem. �

Proposition The module IndCARV
Γ>0

C admits a unique positive definite inner product such
that 〈Ω,Ω〉 = 1 and for which the action of CAR(S1) is compatible with the ∗ operation.
Its completion is the Fock space:

F := Hilbert space completion of IndCARV
Γ>0

C

Proof: The proof of uniqueness is identical to the one presented on page 26 and we shall
not repeat it here. Consider the map∧•

Γ<0(S) → IndCARV
Γ>0

C

f1 ∧ . . . ∧ fn 7→ c(f1) . . . c(fn)Ω.
(20)

That map is well defined because [c(fi), c(fj)]+ = 0 for any fi, fj ∈ Γ<0(S), and it is
surjective by the previous lemma.

The vector space
∧•

Γ<0(S) has an inner product given by〈
f1 ∧ . . . ∧ fn, g1 ∧ . . . ∧ gm

〉
= δn,m

∑
σ∈Sn

(−1)σ〈fi, gσ(i)〉

where the right hand side uses the inner product 〈f, g〉 := 1
2πi

∫
S1
fḡ on Γ<0(S). It is

easy to check that this formula is well defined, and gives a positive definite inner product:
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the formula is made so that an orthonormal basis {ei} of a Hilbert space H induces a
corresponding orthonormal basis {ei1 ∧ . . . ∧ eik}i1<...<ik of

∧•
H .

The space
∧•

Γ<0(S) has an action of CAR(S1) given by

letting c(f) act by
f ∧ − if f ∈ Γ<0(S)

(f̄ ∧ −)∗ if f ∈ Γ>0(S).
(21)

It will be convenient to abbreviate (f ∧ −)∗ by f − ; here’s the formula for that opera-
tion:

f (g1 ∧ . . . ∧ gn) =
n∑
i=1

(−1)i+1〈gi, f〉 g1 ∧ . . . ĝi . . . ∧ gn.

A few verifications are in order before we can claim that (21) defines an action.
First of all, the compatibility with the ∗-structure is satisfied by definition (indeed,

formula (21) can be deduced by looking at just that compatibility). We now check the
main relation:

[
c(zn

√
dz), c(zm

√
dz)
]

+
=

0 if n,m ≥ 0 or if n,m < 0

WLOG n ≥ 0
and m < 0.

[
(z−n−1√

dz) −, (zm√dz) ∧ −
]

+
= δ−n−1,m,

where we have used:

Mini-lemma: (1) If ‖s‖ = 1, then [s −, s ∧ −]+ = 1.
(2) If s1⊥ s2, then [s1 −, s2 ∧ −]+ = 0.
Proof: (1) Write a general element on which this acts as A + B with A = s ∧ (. . .)
and B = (. . .), where the (. . .) only involves stuff that is orthogonal to s. The term
(s −) ◦ (s ∧−) acts as 0 on A and as 1 on B. Similarly, the term (s ∧−) ◦ (s −)
acts as 1 on A and as 0 on B. The sum of these two operators is therefore equal to 1.
(2) Exercise: Write a general element as s1∧s2∧(. . .)+s1∧(. . .)+s2∧(. . .)+(. . .)
and check that the relation holds. �

Since 1 ∈
∧•

Γ<0(S) is annihilated by all the c(f) with f ∈ Γ>0(S), by the universal
property of induced modules, there exists a map of CAR(S1)-modules

IndCARV
Γ>0

C →
∧•

Γ<0(S)

Ω 7→ 1

It is easy to check that the composite∧•
Γ<0(S)→ IndCARV

Γ>0
C→

∧•
Γ<0(S)

is the identity. The map (20) is therefore injective. We already knew that it is surjective.
It is therefore an isomorphism. To finish the proof, we use that isomorphism to transport
the inner product on

∧•
Γ<0(S) to an inner product on IndCARV

Γ>0
C. �
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Lemma The Fock space F is an irreducible CAR(S1) module.

Proof: Let us recall the statement of Schur’s lemma: if a module is irreducible, then its
endomorphism algebra is one dimensional.

In the context of ∗-algebras acting on Hilbert spaces, the converse also holds: if a
module is not irreducible, then its endomorphism algebra is non-trivial. Indeed, the or-
thogonal projection onto any submodule always commutes with the algebra. (This can be
checked as follows: if p is an orthogonal projection onto a submodule, then we have

〈apξ, η〉 = 〈papξ, η〉 = 〈ξ, pa∗pη〉 = 〈ξ, a∗pη〉 = 〈paξ, η〉

for every a in the algebra and every vectors ξ and η in the Hilbert space. Hence ap = pa.)

Let a : F → F be a module endomorphism. The vacuum vector Ω is the only vector
up to scalar that is annihilated by all the operators c(f) with f ∈ Γ>0(S). Therefore,
aΩ = λΩ for some λ ∈ C. The vector Ω being furthermore cyclic, it follows that
a = λ · Id. �

Now that we have constructed the state space F , we can define the local algebras of
the Majorana Free Fermion conformal net:

AFer(I) := {c(f) | Supp(f) ⊂ I}′′.

We now see a striking difference with the case of the WZW conformal nets. In the case
of the WZW conformal nets, the local algebras AG,k (defined on page 27) could not be
described as

AG,k(I) := {f ∈ L̃gk | Supp(f) ⊂ I}′′

because the Lie algebra L̃gk does not consist of bounded operators. That’s why we had to
use the Lie group L̃Gk instead (thus introducing a whole new set of technical difficulties).
In the case of the free fermions conformal net, we have instead:

Lemma (?) The operators c(f) are bounded.

Proof: For every ξ ∈ F , we have

‖c(f)ξ‖2 ≤ ‖c(f)ξ‖2 + ‖c(f)∗ξ‖2 =
〈
(c(f)∗c(f) + c(f)c(f)∗)ξ, ξ

〉
= 1

2πi

∫
S1 f̄f ‖ξ‖2.

Therefore ‖c(f)‖2 ≤ ‖f‖2 <∞. �

We now turn our attention to the action of the Möbius group on the Fock space F .
The free fermion being a super-conformal net, it is only the following double cover of the
Möbius group that acts on F :

Möb(2)(S1) :=

{
g :S1 → S1

g(2) : S→ S

∣∣∣∣∣ g extends to an (anti)holomorphic map G : D→ D,
g(2) ⊗ g(2) = T ∗G−1 under the identification S⊗2 ∼= T ∗D

}
covariant in G

{
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Note that g(2) is complex linear when g is orientation preserving and complex antilinear
when g is orientation reversing. By abuse of notation, we’ll denote an element (g, g(2)) of
Möb(2)(S1) simply by g.

The action of Möb(2)(S1) on CAR(S1) is given by:

g · c(f) = c(g(2) ◦ f ◦ g−1).

Note: if you think of f ∈ Γ(S) in terms of its graph, then g(2) ◦ f ◦ g−1 is what you get
when you apply g(2) to the graph of f .

The fact that the action respects the CAR relations is obvious for g ∈ Möb
(2)
+ (S1), but

does require verification for g ∈ Möb
(2)
− (S1):

[
g · c(f1), g · c(f2)

]
+

= 1
2πi

∫
S1

(
T ∗G−1

)
(f1f2) = − 1

2πi

∫
S1

f1f2 = 1
2πi

∫
S1

f1f2 = g ·
(

1
2πi

∫
S1

f1f2

)
.

We get a minus sign here because the change of variables is
orientation reversing, and a bar because T ∗G−1 is antilinear.

The compatibility of the action with the ∗-operation follows from the lemma on page 50:
self-adjoint generators go to self-adjoint generators and skew-adjoint generators go to
skew-adjoint generators (note that this fact it would be quite unclear had we only intro-
duced the definition on page 50).

Finally, the above action of Möb(2)(S1) respects the subspace Γ>0(S), and so we get
an induced action on the Fock space in the obvious way:

g ·
(
c(f1) . . . c(fn)Ω

)
= c
(
g(2) ◦ f1 ◦ g−1

)
. . . c

(
g(2) ◦ fn ◦ g−1

)
Ω.

Note: The computations that we made above also show that the following double cover
of the diffeomorphism group

Diff(2)(S1) :=

{
g :S1 → S1

g(2) : S→ S

∣∣∣∣∣ g(2) ⊗ g(2) is the (anti)complexification of
T ∗g−1 under the identification S⊗2 ∼= T ∗S1 ⊗R C

complexification if g is orientation preserving,
anticomplexification if g is orientation reversing.}

acts on CAR(S1). Here, the complexification of an R-linear map f : V → V is the map
f ⊗ (IdC) : V ⊗R C → V ⊗R C, and its anticomplexification is the map f ⊗ (z 7→ z̄) :
V ⊗R C→ V ⊗R C.

Now that that we finished describing the Majorana Free Fermion, let us give the gen-
eral definition of a super-conformal net:

Definition: A Super-conformal net is what you get if you take the definition on page 15
and perform the following modifications:

• Everything is now Z/2-graded: both the Hilbert space and the local algebras.

• The groups Möb(S1) and Diff(S1) are replaced by their double covers Möb(2)(S1)
and Diff(2)(S1), respectively. Both of them act by degree preserving maps on H .
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The axioms should then be modified in the following way. Let s ∈ ker(Möb(2)(S1) →
Möb(S1)) be the so-called spin involution, given by the identity on S1 and by −1 on S.
Let γ : H → H be the so-called grading involution, given by +1 on even part of H and
by −1 on its odd part.

• The vacuum vector Ω is in the even part of H .

• The spin involution is required to act like the grading involution on H .

• Locality is replaced by super-locality: if I and J are disjoint and if a ∈ A(I) and
b ∈ A(J), then we require that ab = (−1)|a||b|ba. Here, |a| is 0 for a even, and 1
for a odd (and let us agree that whenever we use that notation, we are implicitly
assuming that a is homogeneous).

The Majorana Free fermion is Z/2-graded by declaring the operators c(f) to be odd. The
grading on Fock space is then given by declaring

c(f1) . . . c(fn)Ω ∈ F
to be even if n is even and odd if n is odd.

Recap: The Majorana Free Fermion conformal net is given by:

generators: c(f) for f ∈ Γ(S)

relations: [c(f), c(g)]+ = 〈f, ḡ〉

∗-operation: c(f)∗ = c(f̄)

action: c(f) kills Ω if f ∈ Γ>0(S)

Table 1: The Majorana Free Fermion

We mentioned earlier the Dirac Free fermion. Here’s its description:

generators: a†(f) and a(f) for f ∈ Γ(S) a†(λf) = λa†(f), a(λf) = λ̄a(f)

relations: [a†(f), a†(g)]+ = [a(f), a(g)]+ = 0, [a†(f), a(g)]+ = 〈f, g〉

∗-operation: a(f)∗ = a†(f)

action: a†(f) kills Ω if f ∈ Γ>0(S), a(f) kills Ω if f ∈ Γ<0(S)

Table 2: The Dirac Free Fermion

The isomorphism (Dirac Free Fermion) ∼= (Majorana Free Fermion)⊗2 is given by

a†(f)

a(f)
1√
2

(
a†(f) + a(f̄)

)
1
i
√

2

(
a†(f)− a(f̄)

)
1√
2

(
c(f)⊗ 1 + 1⊗ ic(f)

)
1√
2

(
c(f̄)⊗ 1− 1⊗ ic(f̄)

)
c(f)⊗ 1

1⊗ c(f).
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Extra material: Haag duality for the Free Fermions.

It will be important later to know that the Free Fermion conformal net satisfies Haag
duality. The latter is only a super-conformal net, and so there are a couple of substantial
differences from the non-super case. The argument is nevertheless mostly similar. Let

ϑ :

Θ : F → F

1−1 vt :

Vt : F → F

1−1 viπ : 1−1

Viπ : F 99K F

be as on page 39. Actually, in order for Θ and Vz to be really well defined, the maps ϑ and
vz should also be specified at the level of the spinor bundle: ϑ is defined to be z 7→ z̄ on
both S1 and S, and the transformations {vz}z∈C are defined by the requirement that they
depend continuously on z and that it’s the identity when z = 0.

If a is an element of some Z/2-graded ∗-algebra, let us define

a# :=

{
a∗ if a is even
−ia∗ if a is odd.

As before, we let I− ⊂ S1 be the lower half of the circle, and we also let D′ := {z ∈
C | z ≥ 1} ∪ {∞}.

Proposition For every a ∈ AFer(I−), we have

ΘViπaΩ = a#Ω,

equivalently, ViπaΩ = Θa#Ω.

Proof: Let D0 ⊂ F be the dense domain given by

D0 := Span

{
c(f1) . . . c(fn)Ω

∣∣∣∣ supp(fi) ⊂ I− and fi|I− extends to
a holomorphic section Fi ∈ Γ(D′,S).

}
We check ViπaΩ = Θa#Ω against elements of D0:〈

ViπaΩ, c(f1) . . . c(fn)Ω
〉 ?

=
〈
Θa#Ω, c(f1) . . . c(fn)Ω

〉
.

Let
gi := (Fi ◦ v−iπ)|I− and hi := (Fi ◦ v−iπ)|I+

(really, the more correct thing to write should be v(2)
iπ ◦Fi ◦v−iπ instead of Fi ◦v−iπ, where

v
(2)
iπ is the action of viπ on S), so that

Viπc(f1) . . . c(fn)Ω = c(g1) . . . c(gn)Ω and

Θc(f1) . . . c(fn)Ω
! This is super-

confusing... I
hope I got it right.= c(ih̄1) . . . c(ih̄n)Ω = inc(h1)∗ . . . c(hn)∗Ω.
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We then have (by the same calculation as on page 43, but with
(
n
2

)
extra minus signs):〈

ViπaΩ, c(f1) . . . c(fn)Ω
〉

=
〈
aΩ, Viπc(f1) . . . c(fn)Ω

〉
=
〈
aΩ, c(g1) . . . c(gn)Ω

〉
= (−1)(

n
2)(−1)n

〈
aΩ, c(hn) . . . c(h1)Ω

〉
= (−1)(

n
2)(−1)n

〈
c(h1)∗ . . . c(hn)∗Ω, a∗Ω

〉
=

and 〈
Θa#Ω, c(f1) . . . c(fn)Ω

〉
=
〈
Θc(f1) . . . c(fn)Ω, a#Ω

〉
= in

〈
c(h1)∗ . . . c(hn)∗Ω, a#Ω

〉
=

To check this, it’s best to split things
into four cases: n ≡ 0, 1, 2, 3 (mod 4).

SinceD0 is invariant under {Vt}t∈R, it is a core of Viπ. It follows from the above computa-
tion that aΩ ∈ DViπ (in particular, the first term 〈ViπaΩ, c(f1) . . . c(fn)Ω〉 is well defined)
and that ViπaΩ = Θa#Ω. �

Now, since AFer(I−)Ω is invariant under {Vt}t∈R, it is a core of Viπ and ΘViπ is the
polar decomposition of (the closure of) the operator

AFer(I−)Ω → AFer(I−)Ω.

aΩ 7→ a#Ω

Letting κ :=
{

1 on the even part
i on the odd part : F → F , so that S = κΘVıπ, it follows that

J = κΘ.

(where S and J are the modular operators of Tomita-Takesaki theory, defined on page 35).
Recall the definition of the commutant A′ := {b | ab = ba,∀a ∈ A} of a von Neumann
algebra A. If A is Z/2-graded, let us define its super-commutant by:

A := {b | ab = (−1)|a||b|ba, ∀a ∈ A}.

Lemma Let κ be as above. Then κA κ−1 = A′.

Proof: κA κ−1 = Aeven ⊕ iγAodd = Aeven ⊕ γAodd = A′even ⊕ A′odd = A′, where γ is
the grading involution. Here, we have used that:

If b is an odd operator, then
(
ab = (−1)|a||b|ba, ∀a ∈ A

)
⇐⇒

(
a(γb) = (γb)a, ∀a ∈ A

)
.
�

We are now in position to prove Haag duality for the case A = AFer . By the above
proposition, we have

JA(I−)J = κΘA(I−)κΘ = κΘA(I−)Θκ−1

= κA(I+)κ−1 ⊆ κA(I−) κ−1 = A(I−)′
(22)

and we have already seen (see proof on p.49) that (JAJ ′ ⊆ A)⇒ (JAJ ′ = A), therefore
JA(I−)J = A(I−)′ and the inclusion in (22) is an equality: AFer(I+) = AFer(I−) .
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The Segal quantization criterion

Let’s now focus on the abstract setup needed to define the Majorana CAR algebra and its
Fock representation. The basic inputs are:

• A complex Hilbert space H (in our case, H = Γ(S))

• A real structure f 7→ f̄ on H (satisfies 〈f̄ , ḡ〉 = 〈f, g〉)

• A complex subspaceH>0 ⊂ H such that H>0 = H⊥>0 (in our case,H>0 = Γ>0(S)).

The first two items are equivalent to having a real Hilbert space HR := {f ∈ H | f = f̄}.
They’re what one needs to define the CAR algebra: we have generators c(f) for every
f ∈ H subject to the relations [c(f), c(g)]+ = 〈f, ḡ〉 and c(f)∗ = c(f̄).

The third item is called a polarization, and is needed to construct the Fock space:

F := Hilbert space completion of
∧•
H<0.

Here, H<0 := H⊥>0. The action of the CAR algebra on F is given by{
c(f) 7→ f ∧ − for f ∈ H<0

c(f) 7→ f̄ − for f ∈ H>0.

In our case of interest, we have an action of the double cover Diff(2)(S1) of the dif-
feomorphism group of S1 on the Hilbert space H = Γ(S), and thus on its CAR algebra.
We want an action of that goup on F such that

(∗) g ·
(
c(f)ξ

)
= c(g · f)(g · ξ)

(
f ∈ H, ξ ∈ F
g ∈ Diff(2)(S1)

)
At this point, we’ll no longer worry about the orientation reversing elements of Diff(2)(S1)
because we’ve already shown that Möb(2)(S1) acts on F . So, from now on, we’ll restrict
our attention to the subgroup

Diff
(2)
+ (S1) =

{
g : S1 → S1 orientation preserving
plus a choice of square root of g′(z)

}

The general setup in which to investigate the solutions of (∗) is the following:

• A unitary g ∈ U(H) compatible with the real structure, meaning that g · f̄ = g · f .
Equivalently, g is the complexification of an orthogonal operator on HR.

We want to understand when there exist maps F → F : ξ 7→ g · ξ that satisfy (∗). An
equivalent way of reformulating those equations is to say that ξ 7→ g · ξ should be a
module map between

F =
(
F , c(f) acts as c(f)

)
and gF :=

(
F , c(f) acts as c(g · f)

)
.

59



Note that since g is compatible with the real structure on H , the map c(f) 7→ c(g · f) is
an algebra automorphism and so gF is indeed a CAR module.

We’ve already seen that F is an irreducible module. By Schur’s lemma, the set of
maps F → F that satisfy equation (∗) is therefore either zero or one dimensional. It
is one dimensional if the modules F and gF are isomorphic, and zero otherwise. We
want to show that for g ∈ Diff

(2)
+ (S1) that set is always one dimensional, i.e., that the

representations F and gF are always isomorphic. This will then give us the map

Diff
(2)
+ (S1) −→ PU(F)

g 7→
{

unitaries F → F that
are solutions of (∗).

}∈ ∈ (23)

needed for the definition of a super-conformal net.

As we have seen, the question boils down to whether F and gF are isomorphic as
representations of the CAR algebra. We have the following general result:

Theorem (Segal quantization criterion) Let H , ·̄, H>0, g be as above, and let P be
the orthogonal projection onto H>0. Then(

completion of
∧•
H<0

)
∼=

as CAR modules

g(
completion of

∧•
H<0

)

iff gPg−1 − P is Hilbert-Schmidt . In that case, the isomorphism F ∼= gF is either
even (= degree preserving) or odd (= interchanges even and odd parts).

Let us explain the terms that appear in the above theorem:

Definition: A operator between Hilbert spaces H1 and H2 is Hilbert-Schmidt
if it is in the image of the map

H̄1 ⊗H2 → B(H1, H2)

η̄ ⊗ ξ 7→ 〈−, η〉ξ

from the Hilbert space tensor product H̄1⊗H2 to the space of bounded operatorsH1→H2.
The norm on Hilbert-Schimdt operators inherited from H̄1 ⊗ H2 is called the Hilbert-
Schimdt norm.

Note that for the above definition to be fully justified, we need to check that the map
η̄ ⊗ ξ 7→ 〈−, η〉ξ (a priori only defined on the algebraic tensor product of H̄1 and H2)
extends to the Hilbert space tensor product H̄1 ⊗H2. Indeed, that map is bounded:
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∥∥∥ n∑
i=1

〈ζ, ηi〉ξi
∥∥∥ =

WLOG the ξi are orthogonal to each other

√∑
i

|〈ζ, ηi〉|2‖ξi‖2 ≤
√∑

i

‖ζ‖2‖ηi‖2‖ξi‖2 = ‖ζ‖
√∑

i

‖ηi‖2‖ξi‖2

and therefore extends.

Note that a self-adjoint operator is Hilbert-Schmidt if and only if it has discrete spec-
trum and its eigenvalues (counted with multiplicities) form an `2 sequence.

Lemma Hilbert-Schimdt operators forms an ideal inside of bounded operators.
(I.e., if a : H2 → H3 is bounded and b : H1 → H2 is Hilbert-Schimdt, then ab : H1 → H3

is Hilbert-Schimdt. Similarly, if a is Hilbert-Schimdt and b bounded, then ab is Hilbert-
Schimdt.)

Proof: We’ll prove that if a : H2 → H3 is Hilbert-Schimdt and b : H1 → H2 is bounded,
then ab : H1 → H3 is Hilbert-Schimdt. (The other claim is similar.) Consider the
commutative diagram

H̄1 ⊗H2 B(H1, H2)

H̄1 ⊗H3 B(H1, H3)

1⊗ a a ◦−

If b is Hilbert-Schmidt, then it’s in the image of H̄1 ⊗H2 → B(H1, H2). Hence a ◦ b is
in the image of H̄1 ⊗H3 → B(H1, H3), and so it’s Hilbert-Schmidt. �

We won’t give the full proof of the Segal quantization criterion in these notes; we’ll
only prove the implication(

gPg−1 − P is Hilbert Schimdt
)
⇒

(
F ∼= gF as CAR modules

)
(24)

because that’s the one that’s needed to construct the action of Diff
(2)
+ (S1) on the Fock

space of the Majorana free fermion.

From now on, we w’ll assume that gPg−1 − P is Hilbert Schimdt.

Since
∧•

H<0 is dense in F , and since the inner products on F and on gF are uniquely
determined (up to scalar) by the action of the CAR algebra, having a module map

F → gF

is equivalent to having a module map∧•
H<0 → gF .

Moreover, since
∧•

H<0 is an induced module, constructing such a map is tantamount to
finding a vector Φ ∈ gF that is annihilated by all c(f) for f ∈ H>0.
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If we write ·̃ for the action on gF , then the condition becomes:

⇔ c(f) Φ = 0 ∀ f ∈ gH>0

⇔ c(g · f) Φ = 0 ∀ f ∈ H>0

c(f) ·̃Φ = 0 ∀ f ∈ H>0

acts as (f− ∧ −) + (f̄+ −)

Therefore, all in all, what we need is a vector Φ ∈ F satisfying the equation

f− ∧ Φ + f̄+ Φ = 0 ∀ f ∈ gH>0 (?)

At this point, we could take that equation and work out Φ degree by degree. I’ll skip those
steps and give you the answer directly:

Anzatz: let us take Φ = exp(ϕ) for some ϕ ∈
∧2

H<0.

Here, exp :
∧2

H<0 →
∧•

H<0 is defined by the usual power series. Let us check that
that power series is always convergent:

Lemma For any Hilbert space H , the map exp : ϕ 7→
∑

1
n!
ϕn from

∧2
H to the Hilbert

space completion of
∧•
H converges. Moreover, ‖ exp(ϕ)‖2 ≤ exp(‖ϕ‖2).

Proof: Write ϕ =
∑∞

i=1 ϕi where ϕi are pure wedges that are orthogonal to each other.
Since ϕ2

i = 0, we have
ϕn = n!

∑
i1<...<in

ϕi1 ∧ . . . ∧ ϕin .

It follows that

exp(ϕ) =
∞∑
n=0

∑
i1<...<in

ϕi1 ∧ . . . ∧ ϕin ,

and so

‖ exp(ϕ)‖2 =
∑
n

∑
i1<...<in

‖ϕi1‖2 . . . ‖ϕin‖2 =
∑
n

1
n!

∑
i1 6=... 6=in

‖ϕi1‖2 . . . ‖ϕin‖2

≤
∑
n

1
n!

∑
i1,...,in
↑

not necessarily
distinct

‖ϕi1‖2 . . . ‖ϕin‖2 =
∑
n

1
n!

(∑
i

‖ϕi‖2
)n

= exp(‖ϕ‖2).

�

Recall that satisfies the Leibniz rule with respect to ∧

f (α ∧ β) = (f α) ∧ β + (−1)|α|α ∧ (f β),

and let’s work out the second term f̄+ Φ in (?) using our ansatz:

f̄+ exp(ϕ) = f̄+ ϕ+ 2· 1
2!

(f̄+ ϕ) ∧ ϕ+ 3· 1
3!

(f̄+ ϕ) ∧ ϕ ∧ ϕ+ . . .

= (f̄+ ϕ) ∧
(
1 + ϕ+ 1

2!
ϕ ∧ ϕ+ 1

3!
ϕ ∧ ϕ ∧ ϕ+ . . .

)
= (f̄+ ϕ) ∧ exp(ϕ).
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Conclusion:
f− + f̄+ ϕ = 0 ⇒ f− ∧ Φ + f̄+ Φ = 0.

So we have reduced our problem to that of finding ϕ ∈
∧2

H<0 satisfying

f̄+ ϕ = −f− ∀ f ∈ gH>0

we may as well forget his minus sign

(??)

Lemma An antilinear map a : H → H is of the form − ϕ for some ϕ ∈
∧2

H iff
it’s Hilbert-Schmidt and satisfies 〈a(ξ), η〉 = −〈a(η), ξ〉 for all ξ, η ∈ H , equivalently,
〈a(ξ), ξ〉 = 0 for all ξ ∈ H .

Proof: An operator a : H → H is Hilbert-Schmidt if and only if it’s of the form − ϕ
for some ϕ ∈ H⊗2. (Here, ξ (ϕ1 ⊗ ϕ2) := 〈ϕ1, ξ〉ϕ2). We then have

ϕ ∈
∧2

H ⇔ 〈ϕ, ξ ⊗ η〉 = −〈ϕ, η ⊗ ξ〉 ∀ ξ, η ∈ H
⇔ 〈ξ ϕ, η〉 = −〈η ϕ, ξ〉 ∀ ξ, η ∈ H
⇔ 〈a(ξ), η〉 = −〈a(η), ξ〉 ∀ ξ, η ∈ H

�

At this point, let us make the extra assumption that the map P : gH>0 → H>0 is invertible.
Using the above lemma, we get:

∃ ϕ∈
∧2

H<0 such that (??) holds iff the map

is Hilbert-Schmidt and satisfies 〈a(ξ), ξ〉 = 0 for all ξ ∈ H<0.

a : H<0 H>0 gH>0 H<0

f̄+ f+ f f−

∈ ∈ ∈ ∈

·̄ (P |gH>0
)−1

1−P

So we need to check that a is Hilbert-Schmidt and satisfies the antisymmetry condition:

Verification that a is Hilbert-Schmidt:
Let Q := gPg−1. As an operator on H , the map (1− P ) : gH>0 → H<0 is given by

(1− P )Q = (Q− P )Q,

which is Hilbert-Schmidt because Q− P is. Therefore a is Hilbert-Schmidt. �

Verification of the antisymmetry condition:
We need to check that〈

a(ξ), ξ
〉

=
〈
(1− P )(P |gH>0)

−1ξ̄, ξ
〉
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vanishes for all ξ ∈ H>0. In terms of f := (P |gH>0)
−1ξ̄, that condition reads:〈

(1− P )f, Pf
〉 ?

= 0 ∀f ∈ gH>0.

Note that since H>0 is orthogonal to H>0 and g is compatible with ·̄, the space gH>0 is
orthogonal to gH>0. In particular, f⊥ f̄ for every f ∈ gH>0. Let us expand 〈f, f̄〉:

〈f, f̄〉 = 〈(1− P )f, Pf〉+ 〈Pf, Pf〉︸ ︷︷ ︸
=0

+ 〈(1− P )f, (1− P )f〉︸ ︷︷ ︸
=0

because H⊥>0 = H>0

+ 〈Pf, (1− P )f〉.

Using that 〈f1, f̄2〉 = 〈f̄1, f2〉 = 〈f2, f̄1〉, we also have 〈Pf, (1− P )f〉 = 〈(1−P )f, Pf〉.
It follows that

0 =
〈
f, f̄

〉
= 2
〈
(1− P )f, Pf

〉
and so 〈(1− P )f, Pf〉 = 0. �

This finishes the proof of (24) in the case when P : gH>0 → H>0 is invertible. Really,
at this point, the proof should have been finished and it’s kind of unfair that there exist
situations when the above operator is not invertible. We’ll see later that that operator is
always invertible modulo something finite dimensional.

technicalend
ofproof→

If P : gH>0 → H>0 is not invertible, we’ll have to modify our anzatz.

Claim: If P : gH>0 → H>0 is not invertible, then (H, ·̄, H>0, gH>0) splits as a direct sum(
H, ·̄, H>0, gH>0

)
=
(
H(1), ·̄, H(1)

>0 , (gH>0)(1)
)
⊕
(
H(2), ·̄, H(2)

>0 , (gH>0)(2)
)

such that P (1) : (gH>0)(1) → H
(1)
>0 invertible and such that H(2) finite dimensional with

P (2) : (gH>0)(2) → H
(2)
>0 identically zero (the map g is not required to respect the decom-

position).

Proof: Let Q = gPg−1 be the orthogonal projection onto gH>0, and let

H
(2)
>0 := ker

(
Q : H>0 → gH>0

)
= H>0 ∩ (gH>0)⊥

(gH>0)(2) := ker
(
P : gH>0 → H>0

)
= gH>0 ∩H⊥>0

and H(2) := H
(2)
>0 ⊕ (gH>0)(2). Note also that, since ·̄ interchanges H(2)

>0 and (gH>0)(2),
their direct sum H(2) is invariant under that conjugation operation.

The spaceH(2)
>0 is the (−1)-eigenspace of PQP−P = P (Q−P )P , which s is Hilbert-

Schmidt, and is therefore finite dimensional. Also, by construction, the spaces H(2)
>0 and

(gH>0)(2) are orthogonal to each other. The projection operator P : (gH>0)(2) → H
(2)
>0 is

therefore zero.
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Let H(1)
>0 and (gH>0)(1) be the orthogonal complements of H(2)

>0 and (gH>0)(2) inside
H>0 and gH>0, respectively. To check that the operator

P : (gH>0)(1) → H
(1)
>0

is invertible, we look at the composite

PQP : H
(1)
>0

Q−→ (gH>0)(1) P−→ H
(1)
>0 .

Its kernel is zero by construction. Moreover, it is congruent to Id
H

(1)
>0

(which is P ) modulo
Hilbert-Schmidt operators. Its spectrum therefore avoids a neighborhood of zero, and so
it is invertible. By the same argument, the composite

QPQ : (gH>0)(1) P−→ H
(1)
>0

Q−→ (gH>0)(1)

is also invertible. It follow that both P : (gH>0)(1)→H
(1)
>0 and Q :H

(1)
>0→ (gH>0)(1) are

invertible. �

Recall that our ultimate goal is to find a vector Φ ∈ F that is annihilated by all the c(f)
with f ∈ gH>0. For that purpose, it will be enough to find vectors Φ(1) ∈ F (1) and
Φ(2) ∈ F (2) such that

c(f) Φ(1) = 0 ∀f ∈ (gH>0)(1)

and c(f) Φ(2) = 0 ∀f ∈ (gH>0)(2).

Indeed, the vector
Φ := Φ(1) ⊗ Φ(2) ∈ F (1) ⊗F (2) = F

will then be a solution of our main equation (?). So, all that remains to be done is to find
vectors Φ(1) and Φ(2) that solve the above equations.

- Construction of Φ(1): we already did that (that was the bulk of the proof).

- Construction of Φ(2): We want a vector Φ(2) that satisfies

c(f) Φ(2) = 0

for every f ∈ (gH>0)(2). But (gH>0)(2) = H
(2)
<0 . So the equation becomes

f ∧ Φ(2) = 0 ∀f ∈ H(2)
<0

and any vector in the top degree piece
∧top

H
(2)
<0 ⊂

∧•
H

(2)
<0 = F (2) is a solution.

Note that if H(2)
<0 is odd dimensional, the vector Φ(2) ∈ F (2) will be odd, and the same

will then hold for Φ(1) ⊗ Φ(2). In that case, the isomorphism F → gF specified by
Ω 7→ Φ(1) ⊗ Φ(2) will be odd.

This last argument finishes the proof of (24). �
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Let us now go back to our concrete situation, with g ∈ Diff(2)(S1). It will be conve-
nient to use

J := 2iP − i

instead of P because it’s easier to write down a closed formula for it. The operator
J is given by +i on PH and by −i on (PH)⊥ and therefore contains the exact same
information as P . Moreover, we have the following easy facts:

gPg−1−P ∈ H.-S.
⇔ gJg−1 − J ∈ H.-S.
⇔ g−1Jg − J ∈ H.-S.

Our new goal is to check that g−1Jg − J is Hilbert-Schmidt : this will ensure that (23)
always has solutions.

Claim. The operator J is given (at least on some dense domain) by:

J : f(z)
√
dz 7→ 1

π
P.V.
∫
S1

f(w)dw

w − z
√
dz

Here, the symbol “P.V.” indicates that one takes the principal value of the singular inte-
gral. The principal value is defined as follows. If α is a 1-form on some one dimensional
manifold M , and α is not locally L1 around some point x0 ∈M , then P.V.

∫
α is given by

P.V.
∫
M

α := lim
ε→0

∫
M−I(x0,ε)

α ,

where I(x0, ε) is the interval of radius ε around x0. In our situations of interest, the 1-form
α blows up like 1/(x− x0) and the principal value is independent of the choice of metric
on M (used to define I(x0, ε)). As a consequence, the usual change of variables formula
is available for our principal value integrals: if g : M1 →M2 is an orientation preserving
diffeomorphism and α is a 1-form on M2 satisfying the above bound, then

P.V.
∫
M2

α = P.V.
∫
M1

g∗α. (25)

In the context of complex contour integrals, we have the following alternative interpre-
tation of principal value integrals. LetM be a contour in C and let F (z) be a function that
is analytic on a neighborhood of M , except for a first order pole at some point z0 ∈ M ,
then:

P.V.
∫

∗

z0

F (z)dz = 1
2

(∮
∗

+

∮
∗

)
F (z)dz.

Indeed, if we let R be the residu of F (z) at z0, then the contributions of the two little
half-circles are ≈ 1

2
2πiR and ≈ −1

2
2πiR respectively, with an error that tends to zero

as the radius ε→ 0.
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Proof of claim: (For the purpose of this proof, we’ll just work with functions on S1 as
opposed to sections of S. This will simplify our formulas.) If f extends to a holomorphic
function on a neighborhood of D, then

1
π

P.V.
∫
S1

f(w)dw

w − z
= 1

π

1
2

(∮
∗z +

∮
∗z

0 ) f(w)dw

w − z

= 1
2π
· 2πiResz

f(w)

w − z
= if(z).

If f extends to a holomorphic function on a neighborhood of D′ := {z ∈ C | z ≥ 1}∪{∞}
and vanishes at infinity, then the 1-form f(w)dw

w−z is regular at infinity (dw has a double pole
at infinity while f(w)

w−z has at least a double zero). Then, by the same argument as above
using now D′ instead of D, we get

1
π

P.V.
∫
S1

f(w)dw

w − z
= 1

π

1
2

(∮
∗z

0

+

∮
∗z

) f(w)dw

w − z

= 1
2π
· (−

The contour runs clockwise around D′

2πiResz
f(w)

w − z
) = −if(z).

So we see that, at least on some dense subsets of PH and of (PH)⊥, the operators J and
f 7→ 1

π
P.V.
∫
S1

f(w)dw
w−z agree. �

Recall that an element of Diff
(2)
+ (S1) consists of an orientation preserving diffeomor-

phism g : S1 → S1, along with a chosen square root
√
g′(z) of g′(z). The action of such

an element on a section f(z)
√
dz on S is then given by

g ·
(
f(z)

√
dz
)

= 1√
g′(g−1(z))

f
(
g−1(z)

)√
dz =

√
(g−1)′(z) f

(
g−1(z)

)√
dz.

Unsurprisingly, the formula for the action of g−1 is more pleasant:

g−1 ·
(
f(z)

√
dz
)

=
√
g′(z) f

(
g(z)

)√
dz.

Let us now work out the formula for g−1Jg:

f(z)
√
dz

g7→
√

(g−1)′(z) f
(
g−1(z)

)√
dz

J7→ 1
π

P.V.
∫
S1

√
(g−1)′(u) f(g−1(u))

u− z
du
√
dz

w=g−1(u)

u=g(w)

du=g′(w)dw

[(g−1)′(u)]1/2=[g′(w)]−1/2
= 1

π
P.V.
∫
S1

√
g′(w) f(w)

g(w)− z
dw

√
dz ←note the use of (25)

g−1

7→ 1
π

P.V.
∫
S1

√
g′(w)

√
g′(z)

g(w)− g(z)
f(w) dw

√
dz
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Putting this all together, we get:

g−1Jg − J : f(z)
√
dz 7→ 1

π
P.V.

S1

∫ [√
g′(w)

√
g′(z)

g(w)− g(z)
− 1

w − z

]
f(w) dw

√
dz

Note: Later, we’ll also want to use the formula for g−1Jg− J in the case of non-smooth diffeomorphisms.
If g is of class at least C1, then it’s legal to do the change of variables (25), and the above formula is correct.

Now we can use the following wonderful fact:

An operator L2(X) → L2(Y ) that is given by an integral kernel
K(x, y) is Hilbert-Schmidt if and only K ∈ L2(X × Y ). Indeed,
by definition, Hilbert-Schmidt maps from L2(X) to L2(Y ) come from
L2(X)⊗ L2(Y ), and the latter is exactly L2(X × Y )!

In our case of interest, the integral kernel K(x, y) is given by
√
g′(x)
√
g′(y)

g(x)−g(y)
− 1

x−y . Our
question therefore boils down to determining those maps g : S1 → S1 for which the
corresponding kernel is in L2(S1 × S1).

Theorem If g is smooth, then

Kg(x, y) :=

√
g′(x)

√
g′(y)

g(x)− g(y)
− 1

x− y

is in L2.

Actually, we’ll prove the following stronger statement:

If g is C2, then

Kg(x, y) =

√
g′(x)

√
g′(y)

g(x)− g(y)
− 1

x− y
is bounded.

Proof: We’ll use the following bounds on g and on its derivative:

g(y) = g(x) + g′(x)(y − x) +O(x− y)2

g′(y) = g′(x) +O(x− y).

Since g′ is never zero, and since the square root function is smooth away from zero, the
second equation implies √

g′(y) =
√
g′(x) +O(x− y).
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It follows that√
g′(x)

√
g′(y)

g(x)− g(y)
=

g′(x) +O(x− y)

g′(x)(x− y) +O(x− y)2

=
g′(x) +O(x− y)

g′(x) +O(x− y)
· 1

x− y

=
(
1 +O(x− y)

)
· 1

x− y
=

1

x− y
+O(1),

and so √
g′(x)

√
g′(y)

g(x)− g(y)
− 1

x− y
= O(1).

�

To be honest, the statement we’re really interested in is the following:

If g is of Hölder class C1+α for some α > 1/2, then the integral kernel

Kg(x, y) =

√
g′(x)

√
g′(y)

g(x)− g(y)
− 1

x− y

is in L2. Here, by definition, g ∈ C1+α if it’s in C1 and if g′(y) = g′(x) +O(x− y)α.

Proof: Once again, we have
√
g′(y) =

√
g′(x) +O(x− y)α. By integrating the equation

g′(y) = g′(x) +O(x− y)α, we also get

g(y) = g(x) +

∫ y

x

g′(t) dt = g(x) + g′(x)(y − x) +O(x− y)1+α.

It follows that√
g′(x)

√
g′(y)

g(x)− g(y)
=

g′(x) +O(x− y)α

g′(x)(x− y) +O(x− y)1+α

=
g′(x) +O(x− y)α

g′(x) +O(x− y)α
· 1

x− y

=
(
1 +O(x− y)α

)
· 1

x− y
=

1

x− y
+O(x− y)−1+α,

and so √
g′(x)

√
g′(y)

g(x)− g(y)
− 1

x− y
= O(x− y)−1+α,

which is in L2 because α > 1/2. �
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From now on, let us work with the N -th tensor power of the Dirac free fermion for
some fixed number N . This conformal net is generated by elements a†(f) and a(f) for
f ∈ Γ(CN ⊗ S), subject to the relations

[a†(f), a†(g)]+ = [a(f), a(g)]+ = 0, [a†(f), a(g)]+ = 〈f, g〉 = 1
2πi

∫
S1

〈f, ḡ〉

and ∗-operation a(f)∗ = a†(f).

An element γ ∈ LU(N) of the loop group of U(N) induces an automorphism of the
above CAR algebra by acting here Γ(CN⊗ S) pointwise.

If you translate the Segal Quantization Criterion from the Majorana setup to the Dirac
setup, then you’ll see that:

γ acts on F , i.e.,
there exists a solution uγ : F → F of

uγ a
†(v)u∗γ = a†(γ · v),

∀ v ∈ Γ(CN ⊗ S)

⇔


[γ, P ] is a Hilbert-Schmidt operator
on Γ(CN ⊗ S)

(P is the projection onto Γ>0(CN ⊗ S))


(Note that the condition uγa(v)u∗γ = a(γ · v) is a formal consequence of uγa†(v)u∗γ = a†(γ · v))

We want to check that automorphisms of the CAR algebra that come from elements γ ∈
LU(N) satisfy that condition. If we expand γ =

∑
n∈Z γnz

n as a power series, then the
matrix representing its action on Γ(CN ⊗ S) is given by:

γ =



. . . . . .

γ0 γ1 γ2 γ3 γ4 γ5

γ−1 γ0 γ1 γ2 γ3 γ4

γ−2 γ−1 γ0 γ1 γ2 γ3

γ−3 γ−2 γ−1 γ0 γ1 γ2

γ−4 γ−3 γ−2 γ−1 γ0 γ1

γ−5 γ−4 γ−3 γ−2 γ−1 γ0

. . .

. . .




Γ>0(CN ⊗ S)


Γ<0(CN ⊗ S)

 Γ>0(CN ⊗ S)  Γ<0(CN ⊗ S)
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where each γn is itself an N ×N matrix.
Now, since

[(
A B
C D

)
,
(

1 0
0 0

)]
=
(

0 −B
C 0

)
, we have

[γ, P ] =



. . . . . .

0 0 0 −γ3 −γ4 −γ5

0 0 0 −γ2 −γ3 −γ4

0 0 0 −γ1 −γ2 −γ3

γ−3 γ−2 γ−1 0 0 0
γ−4 γ−3 γ−2 0 0 0
γ−5 γ−4 γ−3 0 0 0

. . .

. . .


The Hilbert-Schmidt norm of that commutator is therefore given by∥∥[γ, P ]

∥∥2

H.-S. =
∑
n∈Z

|n|·‖γn‖2

where the norms on the left hand side are the finite dimensional Hilbert-Schmidt norms
of N ×N matrices (and therefore equivalent to any other norm on N ×N matrices).

If γ is C∞, then its Fourier coefficients γn are rapidly decreasing and the above sum
is clearly convergent. The smooth loop group of U(N) therefore acts projectively on the
Fock space F of the N -th tensor power of the Dirac fermion... but actually, we learn
much more:

We learn that the Sobolev-1/2 loop group of U(N) acts on F!

Here, by definition, a function f is Sobolev-s if its Fourier coefficients fn are such that∑
|n|2s|fn|2 < ∞. The space of all such functions is denoted Hs. When s is a positive

integer, Hs can also be defined as the space of all functions whose s-th derivative (in the
sense of distributions) is in L2. As we’ll se later, the space H1/2 also contains discontin-
uous functions. (Actually, s = 1/2 is the biggest s such that Hs contains discontinuous
functions.)

Our next goal is to use the above result to prove that the positive energy representations
of L̃gk exponentiate to projective representations of LG. (Actually, the method that we’ll
present here cannot be used to prove this for all G and all k. Given a group G, only a
certain subset of k’s can be treated. For G = SU(n) however, all the levels can be treated
via this method). Here’s a roadmap of what we’ll do next:

1. Construct a representation of the algebraic part of L̃gk on the algebraic part of F .

2. Show that it extends to a rep of all of L̃gk on the set of smooth vectors of F .

3. Prove that rep of L̃gk exponentiates elementwise (unfortunately, this will give us
no information about the relations that those might satisfy).
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4. Argue that the one-parameter subgroups so constructed satisfy the defining property

uexp(f) a
†(v)u∗exp(f) = a†(exp(f) · v)

of uexp(f) and therefore agree with the projective representation of LG that we con-
structed above.

Note: At first, we’ll do it all for g = gl(N) and k = 1. Later, we’ll then explain how to
extend it to other groups and levels. This will depend on the choice (and thus existence)
of a representation (not necessarily irreducible) ρ : g→ gl(N) such that tr(ρ(X)ρ(Y )) =
k〈X, Y 〉basic for every X, Y ∈ g.

Free field realization of L̃gl(N)1

In this section, we’ll construct an action of L̃gl(N)1 (the level 1 central extension of
Lgl(N)) on the state space of the N -th tensor power of the Dirac free fermion.

We begin with a graphical representation for the elements of that Fock space:

Definition: A Maya diagram is something that looks like this:

0

...

...

...

...

...

...

...

...

everything is filled
from a certain point on

+∞

everything is empty
from a certain point on

−∞

The boxes are indexed by
pairs (i, n)

with i ∈ {1, . . . , N} and
n ∈ Z′ := Z + 1

2 .

                                        

N columns
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The vacuum vector corresponds to this Maya diagram: Ω = 0

...

...

...

...

...

...

We claim that there is an orthonormal basis of F indexed by Maya diagrams such that
the operators

e†i (m+ 1
2
) := a†(ei ⊗ zm

√
dz) and ei(m+ 1

2
) := a(ei ⊗ zm

√
dz)

act by

e†i (n) = ( )

( )

create a box at position (i, n)

ei(n) = kill the box at position (i, n).

Actually, it’s a bit more subtle. We first need to pick an order on the set {1, . . . , N} × Z′ (that’s
the set that indexes all the possible locations of boxes), and then insert the sign
(−1)#{boxes that come before} here .

If it is not possible to perform the operation of “creation” or “annihilation”, then the
outcome is zero. For example, we have:

e†1(1
2
)

...

...

...

...

...

...

...

...

=

...

...

...

...

...

...

...

...

but e†2(1
2
)

...

...

...

...

...

...

...

...

= 0

Similarly, we have

e2(1
2
)

...

...

...

...

...

...

...

...

=

...

...

...

...

...

...

...

...

but e2(3
2
)

...

...

...

...

...

...

...

...

= 0
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To see that this new description agrees with the old description of F , it suffices to
check that the operators e†i (n) and ei(n) satisfy the desired commutation relations

[e†i (n), e†j(m)]+ = [ei(n), ej(m)]+ = 0, [e†i (n), ej(m)]+ = δijδnm,

that the vacuum vector Ω =
...

...

is cyclic, and that it satisfies

e†i (n)Ω = 0 for n > 0 and ei(n)Ω = 0 for n < 0.

Recall that Z′ := Z + 1
2
. Given the above preliminaries, we can now define:

Eij(n) :=
∑
m∈Z′

e†i (n+m)ej(m) if i 6= j or n 6= 0

Eii(0) :=
∑

m∈Z′<0

e†i (m)ei(m) −
∑

m∈Z′>0

ei(m)e†i (m)

Note that if i 6= j or n 6= 0, the terms e†i (n+m) and ej(m) anticommute, and so it doesn’t
matter if one writes them as e†i (n + m)ej(m) or as −ej(m)e†i (n + m). In the expression
for Eii(0), the order certainly matters. Note that

∑
m∈Z′ e

†
i (m)ei(m) is divergent on every

basis vector, and so we can’t use it to define anything. The above definition of Eii(0) is a
way of fixing that problem. This is called a normally ordered product.

If i 6= j or n 6= 0, then Eij(n) is the operator that tries to move the boxes of the Maya
diagram from column j to column i, while raising them by n, e.g.:

E23(1) =
∑
m∈Z′

...

...

...

...

...

...

...

...

Note that on any given Maya diagram, the infinite sum that defines Eij(n) is finite, and
thus well defined. For example,

E23(1)

...

...

...

...

...

...

...

...

= ±

...

...

...

...

...

...

...

...

±

...

...

...

...

...

...

...

...
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has only two non-zero terms (all the other terms vanish).
The operator Eii(0) also has an interpretation in terms of Maya diagrams. It acts

diagonally on F in its basis of Maya diagrams, and the eigenvalue of a basis vector is the
number of “excess boxes” in the i-th column of the Maya diagram. For example, if

our Maya diagram is

...

...

...

...

...

...

...

...

then


the eigenvalue of E11(0) is 0

the eigenvalue of E22(0) is −1

the eigenvalue of E33(0) is 1

the eigenvalue of E44(0) is −1.

The energy operator L0 also acts diagonally on the basis of Maya diagrams. Given a Maya
diagram, we compare it to the one for Ω. A missing box in location (i, n) contributes n to
the total energy and an extra box in position (i,−n) also contributes n to the total energy.
For example, the eigenvalue of L0 on the above Maya diagram is 9

2
, computed as follows:

3
2

+ 1
2

+ 1
2

+ 1
2

+ 3
2

= 9
2

Proposition The following relations are satisfied:

[Eij(n), e†k(m)] = δjke
†
i (n+m)

[Eij(n), ek(m)] = −δike†j(m− n)

[Eij(n), Ekl(m)] = 0 if j 6= k and i 6= l

[Eij(n), Ejk(m)] = Eik(n+m) if i 6= k

[Eij(n), Eji(m)] = Eii(n+m)− Ejj(n+m) + n·δn+m,0

Proof:

1.
∑
p

[
e†i (n+ p)ej(p), e

†
k(m)

]
=
∑
p

e†i (n+ p)
[
ej(p), e

†
k(m)

]
+︸ ︷︷ ︸

δjkδpm

= δjke
†
i (n+m). .

2.
∑
p

[
e†i (n+ p)ej(p), ek(m)

]
= −

∑
p

[
e†i (n+ p), ek(m)

]
+︸ ︷︷ ︸

δikδn+p,m

ej(p) = −δike†j(m− n). .
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3.
∑
p,q

[
e†i (n+ p)ej(p), e

†
k(m+ q)el(q)

]
= 0 (obvious) .

4.
∑
p,q

[
e†i (n+ p)ej(p), e

†
j(m+ q)ek(q)

]
=
∑
p,q

e†i (n+ p)
[
ej(p), e

†
j(m+ q)

]
+︸ ︷︷ ︸

δp,m+q

ek(q) .

=
∑
q

e†i (n+m+ q)ek(q) = Eik(n+m).

.
5.

∑
p,q

[
e†i (n+ p)ej(p), e

†
j(m+ q)ei(q)

]
.

=
∑
p,q

(
e†i (n+ p)

[
ej(p), e

†
j(m+ q)

]
+︸ ︷︷ ︸

δp,m+q

ei(q)− e†j(m+ q)
[
ei(q), e

†
i (n+ p)

]
+︸ ︷︷ ︸

δq,n+p

ej(p)
)

.

=

∑
q

e†i (n+m+ q)ek(q)−
∑
q

e†j(m+ q)ej(q − n)

= Eii(n+m)− Ejj(n+m).

∑
q

(
e†i (n+m+ q)ek(q) − e†j(m+ q)ej(q − n)

)
=
∑
q

(
e†i (q)ek(q) − e†j(q +m)ej(q +m)

)n+m=0

n+m6=0

Note that if n+m = 0, one cannot write∑
q

e†i (n+m+ q)ek(q)−
∑
q

e†j(m+ q)ej(q− n)

because the individual sums are divergent!

=
∑
q<0

(
e†i (q)ek(q) − e†j(q +m)ej(q +m)

)
−
∑
q>0

(
ei(q)e

†
k(q) − ej(q +m)e†j(q +m)

)
.
=
∑
q<0

e†i (q)ek(q)−
∑
q>0

ei(q)e
†
k(q)−

∑
q<0

e†j(q +m)ej(q +m) +
∑
q>0

ej(q +m)e†j(q +m)

.
=
(∑
q<0

e†i (q)ek(q)−
∑
q>0

ei(q)e
†
k(q)

)
︸ ︷︷ ︸

= Eii(0)

−
(∑
q<m

e†j(q)ej(q)−
∑
q>m

ej(q)e
†
j(q)

)
︸ ︷︷ ︸

= Ejj(0) +m.
= Eii(0)− Ejj(0)−m = Eii(0)− Ejj(0) + n.

�

If one interprets the Eij(n) as an attempt to define an action of the algebraic part of
Lgl(N) on the algebraic part of F , then the relations in the above proposition can be
rewritten as:

[f, a†(v)] = a†(fv) [f, a(v)] = −a(f ∗v) (26)

[f, g]F = [f, g]Lgl(N) + 1
2πi

∫
S1

〈f, dg〉. (27)

Here, [ , ]F denotes the commutator as operators on Fock space, while [ , ]Lgl(N) de-
notes the commutator in the Lie algebra Lgl(N) (and the inner product in the last term is
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〈X, Y 〉 = −trCN (XY )).

So we get an action of L̃gl(N)1 (the level one central extension of Lgl(N)) on the
Fock space of the N -th tensor power of the Dirac free fermion, or at least an algebraic
action.

Our next goal is to extend that action of the algebraic part of L̃gl(N)1 to an action

of all of L̃gl(N)1 on some suitable dense domain of F . For that purpose, we define the
Sobolev norms on F :

‖ξ‖s := ‖(L0 + 1)sξ‖.
For vectors that are not in the domain of (L0 + 1)s, we set ‖ξ‖s := ∞. Let F s be the
Hilbert space defined by the norm ‖ ‖s. It is given by

F s = D(1+L0)s = DLs0
for s ≥ 0, and it is a completion of F for s < 0. The set of smooth vectors of F is then
defined to be

F∞ :=
{
ξ ∈ F

∣∣ ‖ξ‖s <∞ ∀s} =
⋂
s

F s.

We equip it with the topology induced by all the Sobolev norms. The following theorem
is our next goal:

Theorem If f =
∑
fnz

n is in the algebraic part of Lgl(N) and if ξ is in the algebraic
part of F , then ∥∥fξ∥∥

s
≤ c

(∑
n∈Z

(|n|+ 1)max(s,0)+1‖fn‖
)
‖ξ‖s+ 1

2
.

Here, c is some constant that depends only on N .

As a consequence, every (smooth) element of Lgl(N) defines a bounded map from F s+ 1
2

to F s, and thus a continuous map from F∞ to itself.

Note:
The sub L̃gl(N)1-module of F∞ generated by Ω is isomorphic, after completion, to the
vacuum module of the WZW model (for Lgl(N), at level 1). From the above Fock space
realization of that module, we learn that its unique invariant inner product exists, and that
it is positive definite.

Recall that we have constructed a representation

LU(N) −→ PU±(F)

of the loop group of U(N) on the Fermionic Fock space of the N -th tensor power of the
Dirac free fermion characterized by the requirement that

uγa(v)u∗γ = a(γv) ∀ v ∈ Γ(CN ⊗ S).
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Here, the superscript ± on PU means that the unitaries can be either even (= grading
preserving) or odd (= grading reversing). I don’t want to deal with with odd unitaries at
this point, so I’ll pick a simply connected group G a representation ρ : G→ U(N), and
I’ll restrict everything along the induced homomorphism

LG→ LU(N).

A good example to keep in mind is the case G = SU(n), N = kn, where ρ is the direct
sum of k copies of the standard n dimensional representation of SU(n). If G is simply
connected, then LG is connected and maps to even unitaries only.

The problem with that approach is that there is no easy way of computing the cocycle
that controls the failure of that representation to land in U(F).

On the Lie algebra side of things, we have constructed an action of the algebraic part
of L̃gl(N) on the algebraic part of F . As before, let us compose it with the map

L̃g→ L̃gl(N)

induced by some representation ρ : g→ gl(N).
We’ve already computed in (27) the cocycle for the Lie algebra action, and we found

that [
f, g
]
F =

[
f, g
]
Lg

+ 1
2πi

∫
S1

〈f, dg〉︸ ︷︷ ︸
= − 1

2πi

∫
S1

trCN (f dg)

In our specific example where g = sl(n), N = kn, ρ is the direct sum of k copies of the
standard n dimensional representation of sl(n), the cocycle can be rewritten as

− 1
2πi

∫
S1

trCkn(f dg) = − k
2πi

∫
S1

trCn(f dg),

which is exactly the one that defines the level k central extension of Lsl(n). More gener-
ally, we get an action of L̃gk on F , where

k :=
tr
(
ρ(X)ρ(Y )

)
〈X, Y 〉basic

is the so-called Dynkin index of the representation ρ. For the Lie algebra g = sl(n), every
positive integer k is realizable as the Dynkin index of some representation, but for other
simple Lie algebras g that is not always the case.

In order to extend the above action to an action of all of L̃gk (not just its algebraic
part), we need some analytic bounds.

Proposition 2 If ξ ∈ F is vector with energy h (that is, an eigenvector of L0 with eigen-
value h), then

‖Eij(n)ξ‖ ≤ (2
√
h+ |n|)‖ξ‖.
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Note that when restricted to vectors of a given energy h, the operator Eij(n) becomes a
finite matrix. The proof of the above proposition is based on the following lemma:

Lemma Let M be a matrix with entries in {0, 1,−1} (arbitrary entries of norm ≤ 1
would also work). Assume that M has at most k non-zero entries in each row, and at most
k non-zero entries each column. Then ‖M‖ ≤ k.

Proof: Our strategy will be to show that M is a sum of k signed partial permutation
matrices (that is, a matrix with at most one ±1 par row and per column). Each such
partial permutation matrix has norm one, and so their sum has norm at most k.

Now we show that M is a sum of k signed partial permutation matrices. (Note that
this is really a problem about edge colorings of bipartite graphs: the vertices of the graph
are the rows and columns of M , and the edges are its non-zero entries. We’ll formulate
the proof in the language of matrices.)

We assume WLOG that the entries of M are in {0, 1}. [Notation: Given matrices A,
B with entries in N, let us write A ⊆ B if Aij ≤ Bij for every i, j. That is, A ⊆ B if A
is entry-wise smaller or equal than B.] Here’s an algorithm for constructing the desired
partial permutation matrices:
• Pad M with zeros to make it into a square matrix M̂ .
• If there is an i and a j such that the i-th row of M̂ has sum < k and its j-th column has
sum < k, replace M̂ij by M̂ij + 1. Do this until all the columns and rows add up to k.
Call the resulting matrix M1. Its entries are now in N.
• By sub-lemma 2 below, there exists a permutation matrix P1 ⊆M1. LetM2 := M1−P1.
Now, again there exists a permutation matrix P2 ⊆ M2. Let M3 := M2 − P2. Etc. This
way, we can write M1 as a sum of k permutation matrices: M1 =

∑k
i=1 Pi.

• By replacing some of the entries of the matrices Pi by zeros —call the resulting partial
permutation matrices Qi— we can arrange that M̂ =

∑k
i=1Qi.

• Finally, the last step is to truncate the matrices Qi back to the size of M . �

Sub-lemma 1: Let A be an n×n matrix with entires in N. Assume that for every way
of bringing A it into block upper triangular form by permuting its rows and columns

A ≈
(
∗ ∗
0 ∗

)t↔
s

↔

(28)

we have s ≥ t. Then there exists a permutation matrix P with P ⊆ A.

Proof: (Note: this result is equivalent to ‘Hall’s Matching Theorem’ about the existence
of perfect matchings in bipartite graphs). We reason by induction on n.

Case 1: There exists a way of bringing A into the above block upper triangular form
with s = t. In that case, we may assume WLOG that our matrix is already in that form:
A = ( B C

0 D ). It is not difficult to see that B and D satisfy the hypothesis of the lemma.
By induction, we can find permutation matrices P ⊆ B and Q ⊆ D. It follows that
( P 0

0 Q ) ⊆ A.
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Case 2: Every way of bringingA into the above block upper triangular form has s > t.
In that case, pick any non-zero entry ofA, which we assume WLOG to be A1n. Our matrix
then has the following form: A = ( B A1n

D C ). The submatrix D satisfies the hypothesis of
the lemma (otherwise, this would contradict the fact that every way of making A block
upper triangular has s > t), and so by induction, there exists a permutation matrix P ⊆ D.
We then have ( 0 1

P 0 ) ⊆ A. �

Sub-lemma 2: Let A be an n × n matrix with entires in N. Assume that all of the
rows and all of the columns of A add up to some fixed number k ≥ 1. Then there exists a
permutation matrix P ⊆ A.
Proof: It is enough to show that A satisfies the assumptions of the first sub-lemma. Con-
sider a permutation of the rows and columns that brings A in block upper triangular form:

A ≈
(
∗ ∗
0 ∗

)
.

t↔
s

↔
The entries of our matirx being non-negative, we then have:

t = 1
k
·(sum of all the entires in the first t columns)

≤ 1
k
· (sum of all the entires in the first s rows) = s. �

Proof of proposition 2: Let Fh ⊂ F denote the subspace of vectors with energy h (that
is, the eigenspace of L0 with eigenvalue h). We are interested in the norm of the operator
Eij(n) : Fh → Fh−n. Actually, let us consider the operator Eij(−n) : Fh → Fh+n

instead. It doesn’t matter which one of the two we look at: they are related by Eij(−n) =
Eji(n)∗ and so they have the same norm. We want to show that the norm is less than or
equal to 2

√
h+ n: ∥∥Eij(−n) : Fh → Fh+n

∥∥ ?

≤ 2
√
h+ n.

We split our proof into two cases:
Case 1: If i 6= j, then the matrix representing Eij(−n) has entires in {0, 1,−1}. We’ll

show that this matrix has at most 2
√
h + n non-zero entries per row and per column. In

order to arrange k non-zero entries in a given column, the most energetically economic
configuration is this one:

Eij(−n) :

...

...

...

...

...

...

...

...

...

...

...

...

↑
i
↑
j

k−n
2

k−n
2

k possibilities for moving a box

boxes move down by n

The k−n
2 missing boxes in column i

contribute an energy of 1
2 (k−n

2 )2, and
the k−n

2 extra boxes in column j also
contribute 1

2 (k−n
2 )2 to the energy.
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The total energy of that configuration is then given by:
1
2
(k−n

2
)2 + 1

2
(k−n

2
)2 = (k−n

2
)2

(If k − n is odd, then the most economic configuration that allows for k ways of moving
a box has k−n

2
± 1

2
missing boxes in column i and k−n

2
∓ 1

2
extra boxes in column ij. Its

energy is 1
2
(k−n

2
+ 1

2
)2 + 1

2
(k−n

2
− 1

2
)2 > (k−n

2
)2).

Given that the above configuration is the most energetically economic, and that h is
our given energy we have:

(k−n
2

)2 ≤ h,

where k is now the maximal number of non-zero entires in a column of the matrix for
Eij(−n). Solving for k, this gives:

k ≤ 2
√
h+ n.

Now, we can do a similar kind of reasoning to find the maximal number of non-zero
entires in a row of the matrix: that number turns out to be smaller (and so we don’t care).
Conclusion: The matrix for Eij(−n) : Fh → Fh+n has at most 2

√
h+n non-zero entries

per row and per column. Its norm is therefore bounded by 2
√
h+ n.

Case 2: n 6= 0 but i = j. In that case, the matrix for Eii(n) : Fh → Fh+n is again
filled with 0 and±1’s. But in order to create k non-zero entries in a column of the matrix,
the energy h needs to be higher than what it had to be in Case 1. The norm of the matrix
is therefore smaller than the bound of 2

√
h+ n that we got before.

Case 3: Eij(n) is of the form Eii(0). In that case, the matrix we’re looking at is
diagonal (and its entries are not restricted to the set {0, 1,−1}). The configuration that
is most energetically economic and that realizes a k as an entry on the diagonal is the
following one

Eii(0) has
eigenvalue k:

...

...

...

...

...

...

...

...

...

...

...

...

↑
i

k
The k extra boxes in column i
contribute an energy of 1

2k
2.

(The other relevant configuration is when k boxes are missing from the i-th column. It
has energy 1

2
k2 and Eii(0) eigenvalue −k). Now, if h is our given energy and if k is the

largest entry in our matrix, we get 1
2
k2 ≤ h, or equivalently k ≤

√
2h. Therefore, the

norm of our matrix for Eii(0) is at most
√

2h < 2
√
h. �

We can now prove the following theorem, already mentioned earlier (we phrase it here
in a slightly weaker form). Recall the Sobolev norms: ‖ξ‖s := ‖(L0 + 1)sξ‖.
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Theorem If f =
∑
fnz

n is in the algebraic part of Lgl(N) and ξ is in the algebraic
part of F , then

‖fξ‖s ≤ cf ‖ξ‖s+ 1
2

(29)

for some constant cf that depends on f and on s, but not on ξ.

Proof: [Notation: let us write (s) for max(s, 0).] If ξ is homogeneous L0ξ = hξ, then∥∥Eij(n)ξ
∥∥
s

=
(
h− n+ 1

)s∥∥Eij(n)ξ
∥∥

≤
(
h+ |n|+ 1

)s(
2
√
h+ |n|

)
‖ξ‖

=
(
h+ |n|+ 1

)s(
h+ 1

)−(s+ 1
2

)(
2
√
h+ |n|

)
‖ξ‖s+ 1

2

=

(
h+ 1 + |n|
h+ 1

)s(
2
√
h+ |n|√
h+ 1

)
‖ξ‖s+ 1

2

≤
(
|n|+ 1

)(s)(|n|+ 2
)
‖ξ‖s+ 1

2
≤ 2

(
|n|+ 1

)(s)+1‖ξ‖s+ 1
2
,

from which it follows that for ξ =
∑
ξh not necessarily homogeneous, we also have:

∥∥Eij(n)ξ
∥∥
s

=

√∑
h≥0

‖Eij(n)ξh‖2
s =

√∑
h≥0

(
2(|n|+ 1)(s)+1‖ξh‖s+ 1

2

)2

= 2(|n|+ 1)(s)+1

√∑
h≥0

‖ξh‖2
s+ 1

2

= 2(|n|+ 1)(s)+1‖ξ‖s+ 1
2
.

Now, given some arbitrary element X = (xij) ∈ gl(N), we let X(n) :=
∑
xijEij(n)

stand for Xzn ∈ Lgl(N). We then have∥∥X(n)ξ
∥∥
s
≤
∑
|xij|

∥∥Eij(n)ξ
∥∥
s

≤ 2
∑
|xij|(|n|+ 1)(s)+1‖ξ‖s+ 1

2
≤ c · (|n|+ 1)(s)+1 ‖X‖ ‖ξ‖s+ 1

2
,

where c is any constant that makes the inequality 2
∑
|xij| ≤ c‖X‖ hold (gl(N) being

finite dimensional, any two norms on it are equivalent).
Finally, if f =

∑
fnz

n is an arbitrary (algebraic) element of Lgl(N), then we get

‖fξ‖s ≤
∑
n∈Z

‖fnzn · ξ‖s ≤ c
(∑
n∈Z

(|n|+ 1)(s)+1‖fn‖
)
‖ξ‖s+ 1

2
,

which is exactly equation (29) with cf := c
∑

n(|n|+ 1)(s)+1‖fn‖. �

Corollaries:

• L̃gl(N)1 acts on the set F∞ of smooth vectors of F (not just its algebraic part).

Since L̃gk ⊂ L̃gl(N)1, we then also get an action of L̃gk. Here, k = tr(ρ(X)ρ(Y ))
〈X,Y 〉basic

is the
Dynkin index (explained on page 78) of our representation ρ : g→ gl(N).
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• Note that L̃gk acts by closeable operators: the adjoint of f ∈ L̃gk is densely defined
(its domain contains F∞). [Notation: let o(f) := the closed operator (with core F∞)
associated to f .] We then have the following non-trival statement:

o(f ∗) = o(f)∗

Here, f ∗ is the formal adjoint of f in L̃gk, while o(f)∗ denotes the adjoint of o(f) in the
sense of unbounded operators. Given our bounds (29), and the observation that [L0, f ] =
−z d

dz
f , the above formula is a consequence of Nelson’s commutator theorem (actually

our bounds are better than what is needed to be able to apply Nelson’s theorem). The
following text is taken from E. Nelson’s paper ‘Time ordered operator products of sharp-
time quadratic forms’. It contains the statement and the proof of his theorem (and it is
very well written!):
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As a consequence of the above analysis, if an element f ∈ L̃gk is skew-adjoint, then the
operator o(f) onF is skew-adjoint (not just formally skew-adjoint), and so its exponential
Exp(o(f)) is a well defined unitary operator on Fock space.

Recapitulation: We have constructed an action

γ 7→ uγ

of LG on F by projective unitary operators. By completely different means, we have also
constructed an action

f 7→ o(f)

of L̃gk on F by closed unbounded operators, with common core F∞. Moreover, we have
argued that Exp(o(f)) ∈ U(F) makes sense for skew-adjoint elements of L̃gk. Our next
task is to relate those two constructions.

Let exp : Lg→ LG denote the exponential map.

Theorem Let f be a skew-adjoint element of L̃gk. Then the projective unitary uexp([f ])

associated to the image [f ] of f in Lg is equal to the image [Exp(o(f))] of Exp(o(f))
in PU(F). In formulas: uexp([f ]) = [Exp(o(f))]. If you allow me to be sloppy in my
notation and omit all the confusing brackets, this is:

uexp(f) = Exp(o(f))

Proof: Let me drop the cumbersome o’s from the notation, and just write Exp(f) instead
of Exp(o(f)) ! and make sure not to confuse Exp(f) ∈ U(F) with exp(f) ∈ LG ! . We
need to check that the element Exp(f) satisfies the defining property of uexp(f). Namely,
we need to check that

Exp(f) a†(v) Exp(f)∗
?
= a†(exp(f) v)

for every v ∈ Γ(CN ⊗ S). Let us add a parameter to the above equation, and consider
instead the equation

Exp(tf) a†(v) Exp(tf)∗
?
= a†(exp(tf) v). (30)

Let us assume for the moment that both the left hand side (abbreviated LHS), and the right
hand side (abbreviated RHS) of the above equation are differentiable. We can then check,
at least formally, that:

d
dt

(
LHS

)
= [f, LHS] and d

dt

(
RHS

)
= a†

(
f · exp(tf)v

)
= [f,RHS],

where we have used (26) (on p.76) for the last equality. Both the LHS and the RHS are
solutions of the same ODE, they agree at t = 0, and so they are equal. The problem
with the above approach, is that it is not clear in what sense the above operator valued
functions are differentiable. So that doesn’t work.
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Instead of (30), it turn out that it’s easier to deal with the following equivalent form:

a†(v)
?
= Exp(tf)∗a†(exp(tf) v) Exp(tf).

We test that equation against vectors ξ and η in F∞:

〈a†(v)ξ, η〉 ?
=
〈
Exp(tf)∗a†

(
exp(tf)v

)
Exp(tf)ξ, η

〉
=
〈
a†
(

exp(tf)v
)

Exp(tf)ξ,Exp(tf)η
〉
.

(31)

Recall that ifA is a skew adjoint operator, then the function t 7→ Exp(A)ξ is differentiable
for every vector ξ in the domain of A (indeed, DA is exactly the set of vectors ξ for
which that map is differentiable). The functions t 7→ Exp(tf)ξ, t 7→ Exp(tf)η and
t 7→ exp(tf)v are all differentiable. By Lemma (?) on page 54, the expression 〈a†(•) •, •〉
depends trilinearly and continuously on its three arguments. So we see that the function

t 7→
〈
a†
(

exp(tf)v
)

Exp(tf)ξ,Exp(tf)η
〉

(32)

is differentiable. Using equation (26) on page 76, the derivative of the above function is
given by:〈

a†
(

exp(tf)v
)
f Exp(tf)ξ,Exp(tf)η

〉
+
〈
a†
(

exp(tf)v
)

Exp(tf)ξ, f Exp(tf)η
〉

+
〈
a†
(
f exp(tf)v

)︸ ︷︷ ︸
=[f,a†(exp(tf)v)]

Exp(tf)ξ,Exp(tf)η
〉

=

〈
(a†(exp(tf)v)f + f ∗a†(exp(tf)v) + [f, a†(exp(tf)v)])︸ ︷︷ ︸

=0

Exp(tf)ξ,Exp(tf)η
〉

= 0.

So (32) is an everywhere differentiable function with zero derivative, hence constant.
Evaluating at t = 0, its value is 〈a†(v)ξ, η〉, and equation (31) follows. �

Let us now think about which L̃gk-reps occur as subreps of F . The first thing to note
is that the charge grading ofF is preserved by the action of L̃gk. Here, the charge grading
is the grading by eigenspaces of the ‘total charge’ operator

∑
iEii(0). It counts the total

number “excess boxes” compared to the Maya diagram for the vacuum vector. Let

F(i) :=
(
charge i summand of F

)
.

Then for i ∈ {0, . . . , N}, the minimal energy subspace of F(i) is ΛiCN . Its basis is given
by all the

(
i
N

)
ways of taking the Maya diagam for Ω and adding i extra boxes to it in the

next available row:

The basis of the minimal
energy subspace of F(i):

...

...

...

...

...

...

...

...

...

...

...

...

...

...

i extra boxes in row − 1
2 .
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Recall that CN is equipped with our fixed representation ρ of g. Let Vλ be an irreducible
representation of g that occurs in ΛiCN . We then get a map

Vλ

∩

Wλ,k = Ind
fLgk
Lg≥0⊕CVλ.

F(i)

(33)

by the universal property of induced modules. Pulling back the inner product of F(i)

along the dashed arrow, we get an L̃gk invariant inner product on Wλ,k. It is positive
semi-definite, and its null-vectors are the kernel of the map to F(i). Therefore, we get a
copy of

Hλ,k = Hilbert space completion of Wλ,k/(null-vectors)

inside F(i).

Let us work out the example where g = sl(2), and CN = C2 ⊕ . . .⊕ C2︸ ︷︷ ︸
k times

is the direct
sum of k copies of the 2-dimensional representation of sl(2).
In that case, as explained on page 78, the Lie algebra that acts on the Fock space F is
the level k central extension of Lsl(2). If 0 ≤ i ≤ k, then ΛiCN = Λi(C2 ⊕ . . . ⊕ C2)
contains a vector of weight i (namely, the wedge product of the highest weight vectors of
the first i copies of C2). As a consequence, ΛiCN contains a copy of the i+1 dimensional
representation Vi of sl(2). Using that representation in the diagram (33), we learn that

there are non-trivial L̃sl(2)k-equivariant maps Wi,k → F for every i ∈ {0, . . . , k}. From
the above discussion, we learn that: in the case g = sl(2), the conditions k ∈ Z≥0 and
λ ∈ {0, 1, . . . , k} which were shown on page 33 to be necessary for Wi,k to admit an
invariant positive semi-definite inner product are also sufficient. On our way, we have
also proved the first two lemmas on page 32 for the case g = sl(2).

Let us mention without proof that the very same constrictions also work for sl(n). The
Fock space associated to Ckn contains every Vλ as the lowest energy subspace of some
sub- L̃sl(n)k-rep. So we get maps Wλ,k → F that can then be used to show that all the
Wλ,k admit invariant positive semi-definite inner products.

Now I’d like to adress the third lemma on page 32. That’s the claim that the von
Neumann algbera AG,k(I) (generated by LIG on H0,k) is canonically isomorphic to the
von Neumann algbera generated by that same group on some other level k representation.
Once again, we’ll only treat the case g = sl(2), but our method would also work for
g = sl(n).8

8For a general simple Lie algebra g, it is my understanding that this statement is still an open problem.
The case g = sl(n) has been treated by Wassermann, and a couple of other partial results exist in the
literature.
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Consider the following two von Neumann algebras:

A(I) :=
{
uγ
∣∣ γ ∈ LIG}′′

B(I) :=
{
uγ
∣∣ γ ∈ LIG}′′

Double commutant in H0,k

Double commutant in F .

By definition,A(I) is the algebraAGk(I) of local observables for the chiral WZW model.
If we could should that the canonical map from B(I) to A(I) is an isomorphism, this
would show that the Fock space is a representation of AGk . In particular, all the Hλ,k’s
that occur in F would then also automatically be representation of AGk .

Theorem The canonical map B(I)→ A(I) is an isomorphism.

Proof: • Surjectivity: This follows from a general fact about von Neumann algebras. If
A ⊂ B(H ⊕ K) is a von Neumann algbera that respects the direct sum decomposition
(that is, if A is a subalgebra of B(H) ⊕ B(K)), then its image in B(H) is also a von
Neumann algebra. We’ll prove this as a lemma after this theorem.
• Injectivity: (That’s the hard part.) Recall the statement of Haag duality for the free

fermions: AFer(I ′) = AFer(I), where the fat prime denotes the graded commutant.
Recall also that uγa(v)u∗γ = a(γv). By Haag duality for the free fermions, we therefore
have:

supp(γ) ⊂ I ⇒ [uγ, a(v)] = 0 for all v ∈ Γ(CN ⊗ S) with support in I ′

⇒ uγ ∈ AFer(I ′) = AFer(I),

from which it follows that B(I) ⊂ AFer(I).
Now let x ∈ B(I) be in the kernel of the map to A(I). Such an element acts as zero

on H0,k ⊂ F . In particular, xΩ = 0. But we have already seen that Ω is separating for
AFer(I) (that’s the Reeh-Schlieder theorem). Combining the facts that x ∈ AFer(I) and
xΩ = 0, it follows that x = 0. �

Corollary: The third lemma on page 32 holds for g = sl(2).

Lemma Let A ⊂ B(H) ⊕ B(K) ⊂ B(H ⊕ K) be a von Neumann algebra. Then its
image under the projection B(H)⊕B(K)� B(H) is also a von Neumann algebra.

Proof: Let p ∈ A′ be the orthogonal projection onto H . The commutant of any ∗-algebra
is a von Neumann agebra. Therefore, it’s enough to show that pA = (pA′p)′, where the
first commutant is taken on H ⊕K, and second commutant is taken on H . The inclusion
pA ⊆ (pA′p)′ is obvious, so we concentrate on the other inclusion.

Let x be an operator on H that commutes with pA′p, and let us immediately identify
it with the corresponding operator ( x 0

0 0 ) on H⊕K. We want to show that x is of the form
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px̃ for some element x̃ ∈ A. We define x̃ as follows:

A′H︸ ︷︷ ︸⊕ (A′H)⊥︸ ︷︷ ︸
On this piece x̃ = 0,

and on this piece, x̃ is given by the formula∑
biξi 7→

∑
bixξi

for bi ∈ A′ and ξi ∈ H .

It is not clear that the above expression defines a bounded operator on H ⊕ K (it might
be ill-defined; it might be unbounded). We need to check that ‖

∑
bixξi‖ ≤ C·‖

∑
biξi‖

for some constant C that only depends on x (this will solve both issues).

Sub-lemma: Any element x of a von Neumann algebra A can be written as a linear
combination x =

∑4
i=1 λiui of four unitaries ui ∈ A.

Proof: We assume WLOG that ‖x‖ ≤ 2. First write x as a linear combination x =
1
2
(x + x∗) − i

2
((ix) + (ix)∗) of two self-adjoint elements of norm ≤ 2. Every self-

adjoint element y ∈ A of norm ≤ 2 can in turn be written it as the sum of two unitaries:
y = F (y) +F (y)∗, where F : [−2, 2]→ C is the function defined by the following figure

• •

• F (y) = y
2

+ i
√

1− (y
2
)2

1 1
0 y

The spectrum of F (y) lies on the unit circle, and so it is indeed unitary. �

Write x as a sum of four unitaries x =
∑4

α=1 λαuα. We then have:∥∥∥∑
i

bixξi

∥∥∥ ≤ 4∑
α=1

|λα|

∥∥∥∑
i

biuαξi

∥∥∥
=

4∑
α=1

|λα|

〈∑
i

biuαξi,
∑
j

bjuαξj

〉1/2

=
4∑

α=1

|λα|

(∑
i,j

〈
bipuαξi, bjpuαξj

〉)1/2

=
4∑

α=1

|λα|

(∑
i,j

〈
u∗α pb

∗
jbip uα ξi, ξj

〉)1/2

=
4∑

α=1

|λα|

(∑
i,j

〈
biξi, bjξj

〉)1/2
=

4∑
α=1

|λα|

∥∥∥∑
i

biξi

∥∥∥.
As a consequence of the above calculation, we learn that x̃ is well defined, and that it is
bounded. The operator x̃ commutes with A′ and is therefore an element of A. Moreover,
by construction, we have x = x̃p (= px̃). This finishes the proof that (pA′p)′ ⊂ pA. �
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We did a lot of hard work... Now is the moment to collect the fruit of our efforts.
Let us recall what we have constructed:

1

First of all, we have constructed a Fock space F (that depended on the choice of some
complex vector space CN ), and a projective action

Diff
(2)
+ (S1)→ PU(F) : g 7→ ug

characterized by the requirement that ug a†(v)u∗g = a†(g · v) for every g ∈ Diff
(2)
+ (S1)

and v ∈ Γ(CN ⊗ S). Pulling back that representation along the projection map U(F) �
PU(F), we get a homomorphism

D̃iff
(2)

+ (S1)→ U(F)

from some central extension of the double cover of the diffeomorphism group to the group
of unitary operators on F .

Given an interval I ⊂ S1, let Diff0(I) be the subgroup of Diff+(S1) consisting of
elements that fix the complement I ′ of I pointwise. It’s also isomorphic to the subgroup
of Diff

(2)
+ (S1) that fixes I ′ (and S|I′) pointwise. If g ∈ Diff0(I), then ug commutes with

a†(v) for every v with support in I ′. By Haag duality, ug must then be an element of
AFer(I), and so we get an embedding

D̃iff0(I) ↪→ AFer(I).

Here, D̃iff0(I) denotes the central extension of Diff0(I) obtained by restricting the cen-

tral extension D̃iff
(2)

+ (S1) of Diff
(2)
+ (S1). Moreover, the above story works with diffeo-

morphisms of regularity as low as Hölder class C1,α with α > 1
2
, that is, continuously

differentiable with derivative satisfying g′(x+ h) = g′(x) +O(hα).

2

Second, after having fixed a representation ρ of G on CN , we have constructed a
projective action

LG→ PU(F) : γ 7→ uγ

characterized by the requirement that uγ a†(v)u∗γ = a†(γ · v) for every γ ∈ LG and
v ∈ Γ(CN ⊗ S). Once again, pulling back that representation along the projection map
U(F)� PU(F), we get a homomorphism

L̃G→ U(F)

from some central extension of LG to the group of unitary operators on F .
Recall that LIG ⊂ LG denotes the subgroup of loops with support in some interval

I ⊂ S1. If γ is in LIG, then uγ commutes with a†(v) for every v with support in I ′. By
Haag duality, uγ must then be an element of AFer(I), and so we get an embedding

L̃IG ↪→ AFer(I).
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Moreover, we were able to verify that the above map extends to homomorphism of von
Neumann algebrasAG,k(I)→ AFer(I) from the local algebras of the WZW model to the
local algebras of the Dirac free fermion (that was the theorem on p.88), where k is the
Dynkin index of the representation ρ.

Finally, the above story works with loops of regularity as low as Sobolev-1/2. As we’ll
see later, those need not be continuous.

3

We now would like to see how the local diffeomorpisms relate to the local loops,
directly.
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